https://www.dimamath.com

Exercice 1

Calculer les limites suivantes :

$$\lim_{x\to 2}\frac{x^3-2x^2+x-2}{x^2-2x}; \lim_{x\to 1}\frac{\sqrt{x+8}-3}{x-1}; \lim_{x\to 1^+}\frac{\sqrt{x^2-1}+\sqrt{x}-1}{\sqrt{x-1}}; \lim_{x\to 4}\frac{3-\sqrt{5}+x}{1-\sqrt{5}-x}; \lim_{x\to +\infty}\frac{2x-\sqrt{x}}{x+\sqrt{x}};$$

$$\lim_{x \to +\infty} \sqrt{x^2 + x + 2} - x \; ; \; \lim_{x \to +\infty} \sqrt{x^2 - x + 3} - 2x \; ; \; \lim_{x \to -\infty} \sqrt{4x^2 + x + 1} + 2x \; ; \; \lim_{x \to -\infty} \sqrt{4x^2 + x + 1} + 3x \; ;$$

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - x - 2}; \quad \lim_{x \to +\infty} \frac{x^2 + 2x}{x^3 + x} \sin x; \quad \lim_{x \to +\infty} \frac{x^2 + \cos x}{3x^2 - 1}$$

Exercice 2

Déterminer les ensembles de définition des fonctions suivantes définies par :

$$f(x) = 3x^4 - 2x^3 + x - 5$$
 ; $g(x) = \frac{2x + 3}{2x^2 - x - 15}$; $h(x) = \sqrt{(x - 2)(x^2 - 4x - 5)}$; $i(x) = \sqrt{\frac{3x - 4}{x(x + 1)}}$

$$j(x) = \frac{\sqrt{2-x}+1}{(x-2)(x+1)}; l(x) = \frac{x^2+x-2}{\sqrt{6-x-x^2}}.$$

Exercice 3

Etudier la continuité de la fonction f en \mathcal{X}_0 dans les cas suivants :

1/
$$f(x) = 3x^2 - 5x + 1$$
 ; $x_0 = 2$.

2/
$$f(x) = \sqrt{3x-1}$$
 ; $x_0 = 3$.

3/
$$\begin{cases} f(x) = \frac{\sqrt{x+3}-2}{x-1}; x \neq 1 \\ f(1) = \frac{1}{4} \end{cases}$$
; $x \neq 1$

4/
$$\begin{cases} f(x) = \sqrt{x+1} - 2; x \ge 0 \\ f(x) = x^2 - x - 1; x < 0 \end{cases}$$
; $x_0 = 0$

5/
$$\begin{cases} f(x) = \frac{x^2 - 1}{x - 1}; \ x > 1 \\ f(1) = 2 & ; \ x_0 = 1 \\ f(x) = \frac{x - 1}{4 - 2\sqrt{5 - x}}; \ x < 1 \end{cases}$$

MATHÉMATIQUES
POUR TOUS

Exercice 4

Etudier la continuité des fonctions suivantes sur les intervalles donnés :

1/
$$f(x) = x^2 + x - \frac{x}{x+3} + \sqrt{x+3}$$
; $I =]-3; +\infty[$

2/
$$\begin{cases} h(x) = \frac{x^2 + x - 6}{x - 2}; x > 2\\ h(x) = \frac{2x + 11}{3}; x \le 2 \end{cases}$$
; $I = \mathbb{R}$

https://www.dimamath.com

3/
$$\begin{cases} k(x) = \frac{\sqrt{x^2 + 5} - 3}{x - 2}; x \neq 2 \\ k(2) = \frac{2}{3} \end{cases}$$
; $I = \mathbb{R}$

Exercice 5

On considère la fonction f définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = \frac{x^2 - ax + 3}{x^2 + bx - b - 1}; x < 1 \\ f(x) = x - 2 & ; x > 1 \\ f(1) = c & \end{cases}$$

Déterminer les réels a, b et c pour que la fonction f soit continue en $x_0 = 1$

Exercice 6

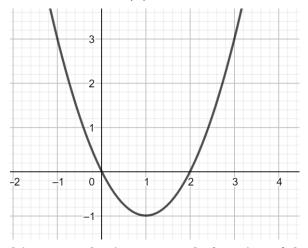
Soit f la fonction définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = \frac{ax^2 - (1+a)x + 1}{b(x^2 - 1)}; |x| \neq 1 \\ f(1) = \frac{1}{6} \end{cases}$$

Déterminer les réels a et b pour que la fonction f soit continue en 1 et que $\lim_{x\to +\infty} f(x) = \frac{1}{2}$

Exercice 7

Soit f la fonction définie par : $f(x) = x^2 - 2x$ Dont la courbe représentative est donnée ci-dessous



MATHÉMATIQUES POUR TOUS

Déterminer graphiquement les images par la fonction $\,f\,$ des intervalles suivants :

$$I = \begin{bmatrix} -1;1 \end{bmatrix}; \ J = \begin{bmatrix} 1;3 \end{bmatrix}; \ K = \begin{bmatrix} -1;3 \end{bmatrix}; \ L = \begin{bmatrix} -\infty;2 \end{bmatrix}; \ M = \begin{bmatrix} 0;+\infty \end{bmatrix}$$

Exercice 8

On considère la fonction
$$g$$
 définie par : $g(x) = \frac{2x+1}{x-3}$

Déterminer les images par la fonction g des intervalles suivants :

$$I = \begin{bmatrix} 0;3 \end{bmatrix}$$
; $J = \begin{bmatrix} 4;+\infty \end{bmatrix}$; $K = \begin{bmatrix} -\infty;3 \end{bmatrix}$; $L = \begin{bmatrix} 0;2 \end{bmatrix}$