

<u>I - Propositions – Fonctions propositionnelles</u>

1 - La proposition

Définition:

Une proposition est un énoncé (un texte) qui a un sens, pouvant être vrai ou faux. Elle est souvent notée par les lettres : p, P, q, Q, r, R...

La valeur de vérité d'une proposition est notée V ou 1 lorsqu'elle est vraie, et par F ou 0 lorsqu'elle est fausse.

Remarque:

Toute proposition peut être vraie ou fausse, mais jamais elle ne peut être vraie et fausse en même temps. On représente la vérité d'une proposition P dans un tableau appelé « tableau de vérité de la proposition P » comme suit :

Р		Р
V	ou	1
F		0

Exemples:

- P: « 4+5=9 » est une proposition vraie
- Q: « $\sqrt{10} < \pi$ » est une proposition fausse
- R: « $\sqrt{2} \in \mathbb{Q}$ » est une proposition fausse
- T: « 2 est un entier naturel pair et premier » est une proposition vraie

2 - Fonction propositionnelle

Définition:

Une fonction propositionnelle est un énoncé ayant un sens, qui contient une variable ou plusieurs variables appartenant à un ensemble E.

Elle devient une proposition lorsqu'on remplace la variable ou les variables par des éléments donnés de E.

On note souvent une fonction propositionnelle par : P(x); P(x, y); P(x, y, z) où x, y et z sont des éléments de E

Exemples:

- P(n): " $n \in \mathbb{N}$; $n^2 n = 2$ " est une fonction propositionnelle. On ne peut pas juger sa véracité. Si n = 2, P(2) est vraie. Mais si $n \neq 2$, P(3) est fausse
- Q(x, y): " $(x, y) \in \mathbb{R}^2$; x+1 < y" est une fonction propositionnelle. Q(1,5) est une proposition vraie, Par contre Q(10,6) est fausse
- R(x, y, z): " $(x, y, z) \in \mathbb{N}^{*3}$; $x^2 + y^2 = z^2$ " est une fonction propositionnelle. R(3, 4, 5) est une Proposition vraie, et R(1, 4, 3) est fausse

Remarque:

- 1- Une fonction propositionnelle devient une proposition lorsqu'on remplace la variable ou les variables par des éléments donnés de E.
- 2- La valeur de vérité de P(x) dépend de x

3 - Les quantificateurs

3.1. Le quantificateur universel

Définition:

L'expression « quel que soit » s'appelle le quantificateur universel et se note \forall .

Si " $x \in E$; P(x)" est une fonction propositionnelle, l'expression « quel que soit $x \in E$; P(x) est vraie » se note : « $(\forall x \in E)$; P(x) » et se lit « Quel que soit $x \in E$; P(x) »

L'expression « $(\forall x \in E)$; P(x) » est une proposition et non pas une fonction propositionnelle.

Exemples:

- La proposition « Tout entier naturel est pair ou impair » s'écrit « $(\forall n \in \mathbb{N})$; n est pair ou impair »
- La proposition « le carré de chaque nombre réel est positif ou nul » s'écrit « $(\forall x \in \mathbb{R}); x^2 \ge 0$ »
- La proposition « $(\forall x \in \mathbb{R}); x^2 \ge 0$ » est vraie
- La proposition « $(\forall x \in \mathbb{R})$; $x^2 + x + 3 > 0$ » est vraie
- La proposition « $(\forall n \in \mathbb{N}^*); \frac{n+1}{n} \notin \mathbb{N}$ » est fausse

Remarque:

- Pour dire qu'une proposition est vraie il faut montrer qu'elle est vraie
- Pour dire qu'une proposition est fausse il suffit de donner un contre-exemple

3-2- Le quantificateur existentiel

Définition:

L'expression « il existe au moins » s'appelle le quantificateur existentiel et se note \exists .

Si « $x \in E$; P(x) » est une fonction propositionnelle, l'expression « il existe au moins $x \in E$: P(x) est

vraie » se note : « $(\exists x \in E) : P(x)$ »

L'expression $(\exists x \in E): P(x)$ est une proposition.

L'expression « il existe un unique $x \in E : P(x)$ » se note ($\exists ! x \in E$): P(x)

Exemples:

- La proposition « il existe au moins un entier naturel n tel que $\sqrt{n^2+7}$ est un entier naturel » s'écrit « $(\exists n \in \mathbb{N})$: $\sqrt{n^2+7} \in \mathbb{N}$ »
- La proposition « il existe un unique nombre réel x tel que $2x^2 x 3 = 0$ » s'écrit « $(\exists! x \in \mathbb{R}): 2x^2 x 3 = 0$ »
- La proposition « $(\exists x \in \mathbb{R}): 2|x-3x|+5x=0$ » est vraie
- La proposition « $(\exists (x, y) \in \mathbb{R}^2)$: 2x 3y = 1 » est vraie
- La proposition « $(\exists p \in \mathbb{N}, p > 1)$: $\frac{p+1}{p} \in \mathbb{N}$ » est fausse

3-3- Propositions avec plusieurs quantificateurs

Proposition 1

Soit « $(x, y) \in E^2$; P(x, y) » une fonction propositionnelle. On a :

Les 3 propositions suivantes ont la même vérité :

- > Les 3 propositions suivantes ont la même vérité :
 - $(\exists (x,y) \in E^2): P(x,y)$
 - $(\exists x \in E) (\exists y \in E) : P(x, y)$
 - $(\exists y \in E) (\exists x \in E) : P(x, y)$

Proposition 2

• On peut permuter les quantificateurs de même nature dans une proposition contenant plusieurs quantificateurs sans changer sa vérité :

$$(\forall x \in E)(\forall y \in E); P(x, y) \Leftrightarrow (\forall y \in E)(\forall x \in E); P(x, y)$$
$$(\exists x \in E)(\exists y \in E): P(x, y) \Leftrightarrow (\exists y \in E)(\exists x \in E): P(x, y)$$

• On ne peut pas permuter les quantificateurs de natures différentes : En général, les propositions suivantes ne sont pas équivalentes :

$$(\forall x \in E)(\exists y \in E); P(x, y) \text{ et } (\exists y \in E)(\forall x \in E); P(x, y)$$

Exemples:

- La proposition « $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$: x + y = 0 » est vraie
- La proposition « $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R}): x + y = 0$ » est fausse

II - Opérations sur les propositions

1. Négation d'une proposition

Définition :

La négation d'une proposition P, est la proposition qui est fausse lorsque P est vraie, et qui est vraie lorsque P est fausse. On la note : \overline{P} ou $\neg P$

P	\bar{P}
1	0
0	1

Tableau de vérité de la négation

Exemples:

- $P:"2 \le -6"$; $\overline{P}:"2 > -6"$
- $Q: "\pi^2 = 10"; \ \overline{Q}: "\pi^2 \neq 10"$

Proposition

- ***** La négation de la proposition « $(\forall x \in E); P(x)$ » est la proposition « $(\exists x \in E); \overline{P}(x)$ »
- * La négation de la proposition « $(\exists x \in E); P(x)$ » est la proposition « $(\forall x \in E); \overline{P}(x)$ »

Exemples:

• La négation de la proposition « $(\exists x \in \mathbb{R})$: $x^2 + x + 1 = 0$ » est la proposition « $(\forall x \in \mathbb{R})$; $x^2 + x + 1 \neq 0$ »

- La négation de la proposition « $(\forall n \in \mathbb{Z}); \sqrt{n^2 + 1} \in \mathbb{N}$ » est la proposition « $(\exists n \in \mathbb{Z}): \sqrt{n^2 + 1} \notin \mathbb{N}$ »
- La négation de la proposition « $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}_+^*): x + y > 0$ » est la proposition « $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}_+^*): x + y \leq 0$ »

2 - La conjonction

Définition

La conjonction des deux propositions P et Q est la proposition qui est vraie uniquement lorsque les propositions P et Q sont vraies en même temps. On la note $(P \ et \ Q) \ ou \ (P \land Q)$

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Tableau de vérité de la conjonction $P \wedge Q$

Exemples:

- La proposition « (3 est un entier impair) et (21 est premier) » est fausse
- La proposition « $(\pi \text{ est un nombre irrationnel})\text{et}\left((\forall x \in \mathbb{R}_+^*); x + \frac{1}{x} \ge 2\right)$ » est vraie

3. La disjonction

<u>Définition</u>:

La disjonction de deux propositions P et Q est la proposition, qui est fausse uniquement lorsque les propositions P et Q sont fausses en même temps. On la note : $(P \ ou \ Q) \ ou \ (P \lor Q)$

P	Q	$P \lor Q$
1	1	1
1	0	1
0	1	1
0	0	0

Tableau de vérité de la disjonction $P \vee Q$

Exemples:

- La proposition « (3 est un entier impair) ou (21 est premier) » est vraie
- La proposition « $(\pi \text{ est un nombre irrationnel}) \text{ou} \left((\forall x \in \mathbb{R}_+^*); x + \frac{1}{x} \ge 2 \right)$ » est vraie
- La proposition « $(\sqrt{2} \text{ est un nombre rationnel}) \text{ou} ((\forall x \in \mathbb{R}_+^*); x + \frac{1}{x} < 2)$ » est fausse

Propriété:

La proposition $(\overline{P} \text{ ou } Q)$ est fausse uniquement lorsque P est vraie et Q est fausse

Démonstration :

Pour démontrer cette proposition on dresse le tableau de vérité de $(\overline{P}ouQ)$

Р	Q	\overline{P}	$\bar{P}ouQ$
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

Donc La proposition $\overline{P}ouQ$ est fausse uniquement lorsque P est vraie et Q est fausse

4. L'implication

Définition:

La proposition $(\overline{P} \circ UQ)$, qui est fausse uniquement lorsque P est vraie et Q est fausse, s'appelle « P implique Q » et se note $(P \Rightarrow Q)$

P	Q	$(P \Rightarrow Q)$
1	1	1
1	0	0
0	1	1
0	0	1

Tableau de vérité de $(P \Rightarrow Q)$

Exemples :

- La proposition « (5 est un entier premier) \Rightarrow (1 est un entier premier) » est fausse
- La proposition « (1 est un entier premier) \Rightarrow (7 est un entier premier) » est vraie
- La proposition « (1 est un entier premier) \Rightarrow (10 est un entier premier) » est vraie

Propriété:

Dans l'implication $(P \Rightarrow Q)$:

- Q est une condition nécessaire pour P
- P est une condition suffisante pour Q

5. L'équivalence

Définition:

L'équivalence des deux propositions P et Q est la proposition, qui est vraie lorsque P et Q ont la même valeur de vérité. On la note $(P \Leftrightarrow Q)$ et on lit « P équivalente à Q »

$P \qquad Q \qquad P \Leftrightarrow Q$	
---	--

1	1	1
1	0	0
0	1	0
0	0	1

Tableau de vérité de $(P \Leftrightarrow Q)$

Exemples:

• $(P \Rightarrow Q) \Leftrightarrow (\overline{P}ouQ)$ est une proposition vraie.

Pour montrer cela on doit dresser son tableau de vérité

P	Q	\overline{P}	$P \Rightarrow Q$	$\overline{P}ouQ$	$(P \Rightarrow Q) \Leftrightarrow (\overline{P}ouQ)$
1	1	0	1	1	1
1	0	0	0	0	1
0	1	1	1	1	1
0	0	1	1	1	1

Donc cette proposition est toujours vraie.

- $(51 \text{ est premier}) \Leftrightarrow (5 > 27) \text{ est une proposition vraie}$
- $(51 \text{ est impair}) \Leftrightarrow (15 > 127) \text{ est une proposition fausse}$

III - Lois logiques

Définition:

Une loi logique est une proposition, constituée de plusieurs propositions, qui est toujours vraie quelle que soit la valeur de vérité des propositions qui la constituent.

Remarque:

- Pour montrer qu'une proposition est une loi logique, on utilise les tableaux de vérité
- Les lois logiques sont les bases des raisonnements

Propriété:

Soit P, Q et R trois propositions. Alors les propositions suivantes sont des lois logiques :

- $(P \ et \ Q) \Leftrightarrow (Q \ et \ P)$:(La conjonction est commutative)
- ❖ $(P ou Q) \Leftrightarrow (Q ou P)$: (La disjonction est commutative)
- $(P \Leftrightarrow Q) \Leftrightarrow (Q \Leftrightarrow P)$: (l'équivalence est commutative)
- ❖ $[P \ et \ (Q \ ou \ R)] \Leftrightarrow [(P \ et \ Q) \ ou \ (P \ et \ R)]$: (La conjonction est distributive par rapport à la disjonction)
- ❖ $[P ou (Q et R)] \Leftrightarrow [(P ou Q) et (P ou R)]$: (La distributivité de la disjonction par rapport à la conjonction)
- ❖ Lois de Morgan :
- $(P \ et \ Q) \Leftrightarrow (\bar{P} \ ou \ \bar{Q})$
- $\bullet \quad \overline{(P \ ou \ Q)} \Leftrightarrow (\overline{P} \ et \ \overline{Q})$
- $\bullet \quad \lceil (P \Rightarrow Q)et(Q \Rightarrow P) \rceil \Leftrightarrow (P \Leftrightarrow Q)$
- $(P \Rightarrow Q)et(Q \Rightarrow R) \Rightarrow (P \Rightarrow R) : (L'implication est transitive)$

$$\bullet$$
 $(P \Rightarrow Q) \Leftrightarrow (P \ et \ \overline{Q})$: (La négation de l'implication)

Exercice:

Parmi les propositions suivantes, laquelle est une loi logique?

$$1/\left[\overline{\left(P\ et\ Q\right)ou\left(\overline{P}\ et\ \overline{Q}\right)}\right] \Leftrightarrow Q$$

$$2/\lceil P \Rightarrow (Q \ et \ \overline{Q}) \rceil \Leftrightarrow \overline{P}$$

IV - Les raisonnements

1. Raisonnement par déduction

Le principe de déduction est le plus utilisé en mathématiques :

Si P est vraie et $P \Rightarrow Q$ est vraie, alors Q est vraie

Exemple:

Montrer que, pour tout réel x on a : $x^2 - 4x + 5 > 0$

En effet, soit $x \in \mathbb{R}$ tel que x vérifie l'inéquation $x^2 - 4x + 5 > 0$ alors on : $\Delta = -4 < 0$ donc le trinôme $x^2 - 4x + 5$ a le même signe que a = 1. D'où $x^2 - 4x + 5 > 0$ cqfd

2. Raisonnement par disjonction des cas

Pour démontrer que certaines propositions sont vraies on sera amené à distinguer les cas. Ce raisonnement est appelé : **Raisonnement par disjonction des cas**

Exemples:

1) Montrer que, pour tout entier naturel n, $\frac{n(n+1)}{2}$ est un entier naturel

Pour montrer cette proposition: on distinguera les deux cas: n pair et n impair

1) Résoudre dans \mathbb{R} , l'équation : |x-2|-2|3+x|=4

3. Raisonnement par contraposée

Soit P et Q deux propositions. La proposition $(P\Rightarrow Q)\Leftrightarrow (\bar{Q}\Rightarrow \bar{P})$ est une loi logique. Donc les deux propositions $(P\Rightarrow Q)$ et $(\bar{Q}\Rightarrow \bar{P})$ ont la même vérité.

Le raisonnement par contraposée consiste à : Montrer $\left(ar{Q}\Rightarrow ar{P}\right)$, pour montrer que $\left(P\Rightarrow Q\right)$ est vraie

Exemple :

Montrer que, pour tout entier naturel n $\,$ tel que $\,n^2\,$ est pair alors n $\,$ est pair

4. Raisonnement par l'absurde

Le raisonnement par l'absurde repose sur le principe suivant : **Pour montrer** C, **on suppose à la fois que P est vraie et que Q est fausse et cherche une contradiction** ; ainsi si P est vraie alors Q doit être vraie et donc $(P \Rightarrow Q)$ est vraie

Exemple:

1) Soit
$$a > 0$$
 et $b > 0$. Montrer que : $\frac{a}{1+a} = \frac{b}{1+b} \Rightarrow a = b$

Raisonnons par l'absurde : Supposons que $\frac{a}{1+a} = \frac{b}{1+b}$ et $a \neq b$

Comme
$$\frac{a}{1+a} = \frac{b}{1+b}$$
 donc $a + a^2 = b + b^2$, d'où $(a-b)(a+b+1) = 0$, par suite $(a+b+1) = 0$ car

 $a-b \neq 0$, alors a+b=-1 ce qui est contradictoire avec le fait que a>0 et b>0. Donc si $\frac{a}{1+a}=\frac{b}{1+b}$ alors a=b

2) Montrer que $\sqrt{2} \notin \mathbb{Q}$

5. Raisonnemnt par contre-exemple

Pour montrer qu'une proposition du type " $\forall x \in E; P(x)$ " est fausse il suffit de trouver au moins un élément α de E tel $P(\alpha)$ soit fausse . Un tel raisonnement est appelé **raisonnement par cotre-exemple** Exemple :

1) Montrer que : $(\forall x \in [0,1])$: $x^2 \ge x$ est fausse

En effet la négation de la proposition P : $(\forall x \in [0,1])$: $x^2 \ge x$ est \overline{P} : $(\exists x \in [0,1])$: $x^2 < x$

En posant $x = \frac{1}{3}$ on a : $x^2 = \frac{1}{9}$ et comme $\frac{1}{9} < \frac{1}{3}$ alors $\left(\exists x = \frac{1}{3} \in [0,1]\right)$: $x^2 < x$ donc la proposition \overline{P} est vraie d'où la proposition P est fausse

2) Montrer que : $(\forall (x, y) \in \mathbb{R}^2)$; $x^2 + y^2 \ge x + y$

6. Raisonnement par récurrence

Principe de récurrence

Soit P(n), $n \in \{n \in \mathbb{N} \mid n \ge n_0\}$ une fonction propositionnelle, où n_0 est un entier naturel fixé. Pour démontrer que, pour tout entier naturel $n \ge n_0$ on a P(n), on procède comme suit :

- Initialisation : On vérifie que $P(n_0)$ est vraie
- Hérédité : Soit $n \ge n_0$, on montre que $P(n) \Longrightarrow P(n+1)$
- Conclusion : $(\forall n \ge n_0)$; P(n) est vraie

Principe de récurrence (version pratique)

Montrer que : $(\forall n \ge n_0)$; P(n) . On suit les étapes suivantes :

- Initialisation : On vérifie que $P(n_0)$ est vraie
- Hérédité : Soit $n \ge n_0$, supposons que P(n) est vraie Et montrons que P(n+1) est vraie
- Conclusion : $(\forall n \ge n_0)$; P(n) est vraie

Exemples:

1) Montrer que : $(\forall n \in \mathbb{N})$; $n^3 + 2n$ est divisible par 3

En effet : On pose P(n) : $3 \mid n^3 + 2n, n \in \mathbb{N}$. Raisonnons par récurrence :

- Initialisation: Pour n = 0, on a $3 \mid 0^3 + 2 \times 0$. Donc P(0) est vraie
- Hérédité : Soit $n \in \mathbb{N}$, supposons que $n^3 + 2n$ est divisible par 3 ; c-à-d $(\exists k \in \mathbb{N})$: $n^3 + 2n = 3k$ Et montrons que P(n+1) est vraie c-à-d $(\exists k' \in \mathbb{N})$: $(n+1)^3 + 2(n+1) = 3k'$

On a
$$(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2 = (n^3 + 2n) + 3(n^2 + n + 1)$$

= $3k + 3(n^2 + n + 1) = 3(k + n^2 + n + 1) = 3k'$ où $k' = k + n^2 + n + 1$

Donc P(n+1) est vraie

- Conclusion : $(\forall n \in \mathbb{N})$; $n^3 + 2n$ est divisible par3
- 2) Montrer, par récurrence, que : $(\forall n \ge 5)$; $2^n \ge 6n$

7. Raisonnement par analyse - synthèse

Le raisonnement par **analyse-synthèse** pour déterminer les solutions d'un problème lorsque la rédaction est délicate :

- Dans la première partie analyse, on détermine toutes les solutions éventuelles de ce problème
- La seconde partie **synthèse**, On élimine les solutions de l'analyse qui ne vérifient pas toutes les conditions

Exemple:

Déterminer toutes les applications de \mathbb{N} dans \mathbb{R} vérifiant : $(\forall (n,m) \in \mathbb{N}^2)$; f(n+m) = f(n) + f(m)

https://www.dimamath.com

POUR TOUS