الصفحة 1/5	الامتحان الوطني الموحد للبكالوريا الصف الدورة العادية 2021 -الموضوع-		+301	المملكة المفرية وزارة التربية الولهنية والتعليم الأولم والرياضة الحرك
× × × ×	sssssssssssssss	NS24F	والامتحانات والتوجية	المركز الوطنيي للتهويم

4 ساعات	مدة الإنجاز	الرياضيـــــات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)	الشعبة أو المسلك

√ La durée de l'épreuve est de 4 heures

- √ L'épreuve est composée de quatre exercices indépendants entre eux
- ✓ Les exercices peuvent être traités selon l'ordre choisi par le candidat

🚆 Smail Eljaâfari 🥞

Exercice 1	rcice 1 L'analyse	
Exercice 2	Les nombres complexes	4 points
Exercice 3	L'arithmétique	4 points

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge est à éviter 0,5

NS24F

Exercice 1: (10 points)

Pour tout entier naturel n , on considère la fonction f_n définie sur $\mathbb R$ par :

$$f_n(x) = -\frac{2e^x}{1+e^x} + nx$$

Soit $\left(C_{n}\right)$ sa courbe représentative dans un repère orthonormé $\left(O;\vec{i}\,,\vec{j}\,\right)$.

(On prendra $\|\vec{i}\| = \|\vec{j}\| = 1cm$)

Partie I:

- 1) a) Calculer $\lim_{x \to +\infty} (f(x) nx + 2)$ puis interpréter graphiquement le résultat obtenu
- b) Montrer que la courbe $\left(C_n\right)$ admet, en $-\infty$, une asymptote $\left(\Delta_n\right)$ dont on déterminera une équation cartésienne.
- 0,5 2) a) Montrer que la fonction f_n est dérivable sur $\mathbb R$ et que :

$$(\forall x \in \mathbb{R}), f_n'(x) = \frac{-2e^x}{\left(1+e^x\right)^2} + n$$

- 0,5 b) Montrer que : $(\forall x \in \mathbb{R}), \frac{4e^x}{\left(1+e^x\right)^2} \le 1$
- c) En déduire le sens de variation de la fonction f_n sur $\mathbb R$ (On distinguera les deux cas : n=0 et $n \ge 1$)
- 0,5 3) a) Déterminer l'équation de la tangente à la courbe $\left(C_{n}\right)$ au point I d'abscisse 0.
- 0,5 b) Montrer que le point I est le seul point d'inflexion de la courbe $\left(C_{\scriptscriptstyle n}\right)$
- 0,5 4) Représenter graphiquement dans le même repère, les deux courbes $\left(C_{_{0}}\right)$ et $\left(C_{_{2}}\right)$
 - 5) Pour tout réel t>0, on pose A(t) l'aire du domaine plan limité par C_n et les Droites d'équations respectives : y=n x-2, x=0 et x=t
 - a) Calculer A(t) pour tout t > 0
- 0,5 b) Calculer $\lim_{t\to +\infty} A(t)$

Partie II:

0,5

On considère la suite numérique $(u_n)_{n\geq 0}$ définie par :

M.		الامتحان الوطني الموحد للبكالوريا _ الدورة العادية 2021 -الموضـــوع	
× × × × ×	³ / ₅	الامتحال الوصلي الموحد للبحاوري – الدورة العادية 1202 -الموصد وعمادة: الرياضية – أ – و – ب – (خيار فرنسية)	NS24F
X X X		$u_0 = 0$ et $(\forall n \in \mathbb{N}), u_{n+1} = f_0(u_n)$	
X X X X X	0,5	1) a) Montrer que l'équation $f_0(x)\!=\!x$ admet une unique solution $lpha$ dans $\mathbb R$.	
<u> </u>	0,5	b) Montrer que : $(\forall x \in \mathbb{R}), f_0'(x) \le \frac{1}{2}$	
	0,5	2) a) Montrer que : $(\forall n \in \mathbb{N})$, $ u_{n+1} - \alpha \le \frac{1}{2} u_n - \alpha $	
	0,5	b) En déduire que : $(\forall n \in \mathbb{N}), \ \left u_n - \alpha\right \leq \left(\frac{1}{2}\right)^n \left \alpha\right $	
	0,5	c) Montrer que la suite $\left(u_{\scriptscriptstyle n} ight)_{\scriptscriptstyle n\geq 0}$ converge vers $lpha$	
X X X X		Partie III : On suppose dans cette partie que $n \ge 2$.	
X X X		On suppose dans cette partie que $n \ge 2$.	
XXX	0,5	1) a) Montrer que pour tout entier $n \ge 2$, il existe un unique réel x_n solution de	
		L'équation $f_n(x) = 0$.	
	0,5	b) Montrer que pour tout $n \ge 2$, $0 < x_n < 1$	
		(On prendra $\frac{2e}{1+e}$ <1,47)	
X X X X	0,5	2) a) Montrer que pour tout entier $n \ge 2$, $f_{n+1}(x_n) > 0$	
X X X X X	0,5	b) En déduire que la suite $\left(x_n\right)_{n\geq 2}$ est strictement décroissante.	
XXXX	0,5	c) Montrer que la suite $(x_n)_{n\geq 2}$ est convergente.	
	0,5	3) a) Montrer que pour tout entier $n \ge 2$, $\frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1+e} \right)$	
X X X X X	0,5	b) En déduire la valeur de $\lim_{n \to +\infty} x_n$, puis montrer que $\lim_{n \to +\infty} n x_n = 1$	
	0,5	4) a) Montrer que pour tout entier $n \ge 2$, on a : $x_n \le x_2$	
	0,5	b) En déduire $\lim_{n o +\infty} (u_n)^n$.	
X X X X		Exercice 2:(4 points)	
X X X X		Soient a,b et c trois nombres complexes non nuls tel que : $a+b \neq c$	
**************************************	0,5	1) a) Résoudre dans l'ensemble $\mathbb C$ l'équation d'inconnue z :	

⁴ / ₅	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2021 - الموضـــوع مادة: الرياضيــات – شعبة العلوم الرياضية – أ – و – ب – (خيار فرنسية)			
	$(E): z^2 - (a+b+c)z + c(a+b) = 0$			
0,5	b) On suppose, dans cette question, que : $a=i, b=e^{i\frac{\pi}{3}}$ $et \ c=a-b$.			
	Ecrire les deux solutions de l'équation (E) sous forme exponentielle.			
	2) Le plan complexe est rapporté à un repère orthonormé direct $\left(O;ec{u},ec{v} ight)$.			
	On considère les trois points non alignés A, B et C d'affixes respectives $a,b\ et\ c$.			
	Soient $P(p)$ le centre de la rotation d'angle $\dfrac{\pi}{2}$ qui transforme B en A, et $Q(q)$ le			
	Centre de la rotation d'angle $\left(-rac{\pi}{2} ight)$ qui transforme C en A et $D(d)$ le milieu du			
	Segment $\begin{bmatrix} BC \end{bmatrix}$. a) Montrer que : $2p = b + a + (a - b)i$ et $2q = c + a + (c - a)i$			
1	a) Montrer que : $2p = b + a + (a - b)i$ et $2q = c + a + (c - a)i$			
0,5	b) Calculer $\frac{p-d}{q-d}$			
0,5 c) En déduire la nature du triangle PDQ .				
	3) Soient E le symétrique de B par rapport à P, et F le symétrique de C par rapport à Q et K le milieu du segment $\begin{bmatrix} EF \end{bmatrix}$.			
0,5	a) Montrer que l'affixe de K est $k=a+rac{i}{2}ig(c-big)$			
0,5	b) Montrer que les points K, P, Q et D sont cocycliques.			
	Exercice 3 :(4 points)			
	Partie I:			
	On considère dans $\mathbb{Z} \times \mathbb{Z}$, l'équation (E) : $47 x - 43 y = 1$.			
0,25	1) Vérifier que le couple $ig(11,\!12ig)$ est une solution particulière de l'équation $ig(Eig)$			
0,75	2) Résoudre dans $\mathbb{Z} imes\mathbb{Z}$ l'équation $ig(Eig)$.			
	Partie II:			
	On considère dans \mathbb{Z} , l'équation (F) : $x^{41} \equiv 4$ $[43]$.			
	1) Soit $x \in \mathbb{Z}$ une solution de l'équation (F) .			

⁵ / ₅	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2020 -الموضـــوع مادة: الرياضيـــات – شعبة العلوم الرياضية – أ – و – ب – (خيار فرنسية)	NS24F
0,5	a) Montrer que x et 43 sont premiers entre eux et en déduire que : $x^{42} \equiv 1$ [4]	[3]
0,5	b) Montrer que : $4x \equiv 1[43]$ et en déduire que : $x \equiv 11[43]$	
0,5	2) Donner l'ensemble des solutions dans $\mathbb Z$ de l'équation $ig(Fig)$.	
	Partie III:	
	On considère dans \mathbb{Z} le système à deux équations suivant (S) : $\begin{cases} x^{41} \equiv 4 \ [43] \\ x^{47} \equiv 10 \ [47] \end{cases}$	
	1) Soit x une solution du système (S) .	
0,5	a) Montrer que x est solution du système (S') : $\begin{cases} x \equiv 11 [43] \\ x \equiv 10 [47] \end{cases}$	
0,5	b) En déduire que : $x \equiv 527 \left[2021 \right]$ (On pourra utiliser la partie I)	
0,5	2) Donner l'ensemble des solutions dans $\mathbb Z$ du système $ig(Sig)$.	
	≒ Smail Eljaâfari ≥ +;	
	FIN	