

<u>I – Equations du premier degré à deux inconnues</u>

Définitions

- Une équation du premier degré à deux inconnues est une équation qui s'écrit sous la forme ax+by+c=0 où a, b et c sont des réels donnés et x et y sont les inconnues
- A Résoudre une équation du premier degré à deux inconnues consiste à déterminer tous les couples de nombres réels (x, y) qui vérifient cette équation.
- Tous les couples de nombres réels (x, y) qui vérifient cette équation sont des solutions de cette équation
- ▲ La représentation graphique de toutes les solutions d'une équation du premier degré à deux inconnues est une droite.

Exemples

On considère l'équation (E): 2x - y + 3 = 0.

- 1) Vérifier que (1,5) est une solution de (E).
- 2) Vérifier que (3,2) n'est pas une solution de l'équation (E)
- 3) Résoudre dans \mathbb{R}^2 l'équation (E).

Réponses

- 1) On a: $2 \times 1 5 + 3 = 2 5 + 3 = -3 + 3 = 0$, donc (1,5) est une solution de l'équation (E).
- 2) On a : $2 \times 3 2 + 3 = 6 + 1 = 7 \neq 0$ donc (3,2) n'est pas une solution de l'équation (E).
- 3) $2x y + 3 = 0 \Leftrightarrow y = 2x + 3$ donc chaque couple de la forme (x, 2x + 3) est une solution de cette équation où x est un nombre.

<u>II – Systèmes de deux équations du premier degré à deux inconnues</u>

Définition

lacktriangle Un système de deux équations du premier degré à deux inconnues x et y est un système de la forme

$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 où a, b, c, a', b' et c' sont des nombres réels donnés

- A Résoudre un système de deux équations du premier degré à deux inconnues x et y consiste à déterminer tous les couples (x, y) qui vérifient les deux équations de ce système.
- lacktriangle Tous les couples de nombres réels (x, y) qui vérifient ce système sont les solutions de ce système .

Exemple

On considère le système (S):
$$\begin{cases} 3x + 2y = -1 \\ 4x + y = 2 \end{cases}$$

Les couples (-2,3); (1,2) et (1,-2) sont-ils des solutions de ce système ?

III - Méthodes de résolution des systèmes d'équations

1 – Méthode de résolution par substitution

Méthode

Dans l'une des deux équations, on exprime l'une des deux inconnues en fonction de l'autre inconnue puis on remplace dans l'autre équation. Ainsi dans la deuxième équation on a une seule inconnue à déterminer.

Exemples

1) résoudre le système
$$(S_1)$$
:
$$\begin{cases} 2x+3y=4\\ x+2y=3 \end{cases}$$

Réponse

- Dans la deuxième équation du système x + 2y = 3, on écrit x en fonction de y: x = 3 2y •
- Dans la première équation on remplace x pour obtenir : 2(3-2y)+3y=4 donc 6-y=4 d'où y=2
- Puis dans on remplace y et on obtient x = 3 4 = -1.
- Vérification : $\begin{cases} 2 \times (-1) + 3 \times 2 = 4 \\ (-1) + 2 \times 2 = 3 \end{cases}$
- Alors (-1,2) est la solution du système (S_1)
- 2) Résoudre le système (S_2) : $\begin{cases} 3x 4y = 2 \\ 2x + y = 5 \end{cases}$

<u>Réponse</u>

- Dans la deuxième équation on écrit y en fonction de x : y = 5 2x •
- Dans la première équation on remplace y pour obtenir : 3x-4(5-2x)=2 donc 3x-20+8x=2Donc 11x=22 d'où x=2
- On remplace x par 2 dans pour obtenir $y = 5 2 \times 2 = 1$
- Vérification : $\begin{cases} 3 \times 2 4 \times 1 = 6 4 = 2 \\ 2 \times 2 + 1 = 4 + 1 = 5 \end{cases}$
- Alors (2,1) est la solution du système (S_2) .
- 3) Résoudre le système (S_3) : $\begin{cases} 2x y = 1 \\ 6x 3y = 5 \end{cases}$

Réponse

Utilisons la méthode de résolution par substitution.

- 2x y = 1 signifie que y = 2x 1
- 3x-3y=5 signifie que 6x-3(2x-1)=5 donc 6x-6x+3=5 d'où 3=5 ce qui est impossible
- Alors le système (S_3) n'a pas de solution

Remarque

Lorsqu'on le choix de la méthode de résolution d'un système de deux équations du premier degré à deux inconnues, on utilise de préférence la méthode de résolution par substitution lorsque l'une des deux inconnues a pour coefficient 1 ou -1.

2 – Méthode de résolution par combinaison linéaire

Méthode

Elle consiste à multiplier l'une ou les deux équations par des nombres convenables pour obtenir deux coefficients opposés pour la même inconnue, après on additionne les deux équations obtenues membre à membre pour arriver à une équation du premier degré à une inconnue.

Exemples

1) Résoudre le système
$$(S_4)$$
:
$$\begin{cases} 2x + 3y = 4 \\ 4x + 5y = 6 \end{cases}$$

Réponse

Pour éliminer x, on multiplie la première équation par -2; on obtient le nouveau système équivalent à (S_4)

$$\begin{cases} -4x - 6y = -8 \\ 4x + 5y = 6 \end{cases}$$

puis on additionne les deux équations membre à membre, on obtient : -4x - 6y + 4x + 5y = -8 + 6 donc -y = -2 soit y = 2.

On remplace y par 2 dans l'une des équations de (S_4) , on obtient $2x + 3 \times 2 = 4$ donc 2x = 4 - 6 = -2 d'où x = -1

Alors (-1,2) est la solution du système (S_4) .

2) Résoudre le système
$$(S_5)$$
:
$$\begin{cases} 3x + 5y = 1 \\ 2x - 3y = 7 \end{cases}$$

Utilisons la méthode de résolution par combinaison linéaire :

$$(S_5):\begin{cases} (3x+5y=1)\times 2\\ (2x-3y=7)\times (-3) \end{cases}, \text{ on obtient } \begin{cases} 6x+10y=2\\ -6x+9y=-21 \end{cases}, \text{ puis on additionne les deux équations et on obtient}$$

$$6x+10y-6x+9y=2-21$$
 donc $19y=-19$ d'où $y=-1$.

On remplace dans l'équation 2x-3y=7, y par -1 et on a : $2x-3\times(-1)=7$ d'où x=2.

Alors (2,-1) est la solution du système (S_5)

3) Résoudre le système
$$(S_6)$$
:
$$\begin{cases} 3x - 2y = 4 \\ -6x + 4y = 5 \end{cases}$$

Utilisons la méthode de résolution par combinaison linéaire :

$$(S_6)$$
:
$$\begin{cases} (3x-2y=4) \times 2 \\ (-6x+4y=5) \times 1 \end{cases}$$
, on obtient
$$\begin{cases} 6x-4y=8 \\ -6x+4y=5 \end{cases}$$
, puis on additionne les deux équations et on obtient

$$6x-4y-6x+4y=8+5$$
 donc $0=13$ ce qui est impossible.

Alors ce système ne possède pas de solutions.

Remarque

Dans la méthode de résolution par combinaison linéaire :

- On rend les coefficients de *x* opposés dans les deux équations
- On additionne les deux nouvelles équations : on obtient une équation où il n'y a pas de x
- On résout la nouvelle équation lorsque ceci est possible, on trouve la valeur de y
- Dans l'une des deux équations initiales on remplace y par la valeur trouvée et on trouve la valeur de x
- Le couple des valeurs trouvées est la solution du système.

3 – Méthode graphique

Méthode

Cette méthode consiste à tracer dans un repère les droites (D_1) et (D_2) d'équations respectives y = ax + b et y = a'x + b':

- Si (D_1) et (D_2) sont strictement parallèles, conclure que le système $\begin{cases} y = ax + b \\ y = a'x + b' \end{cases}$ n'a pas de solutions Si $a \neq a'$, conclure que le système $\begin{cases} y = ax + b \\ y = a'x + b' \end{cases}$ admet une unique solution qui est donnée par les coordonnées du point d'intersection des droites (D_1) et (D_2) .

Exemples

1) Résoudre graphiquement le système $\begin{cases} x + y = -2 \\ 2x - y = -1 \end{cases}$

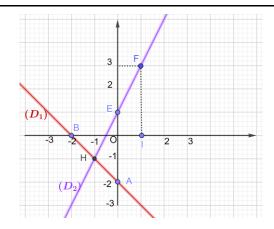
Ecrivons les équations du système sous forme d'équations réduites de deux droites : (D_1) : y = -x - 2 et

 (D_2) : y = 2x + 1 donc les coefficients directeurs des deux droites ne sont pas égaux, d'où le système admet une unique solution qui est donnée par les coordonnées du point d'intersection des droites (D_1) et (D_2) .

Dans un repère orthonormé (O; I, J), traçons les droites (D_1) et (D_2) .

(D_1)	х	у
A(0,-2)	0	-2
B(-2,0)	-2	0

(D_2)	х	у
E(0,1)	0	1
F(1,3)	1	3



 (D_2)

Les droites (D_1) et (D_2) se coupent au point H

Les coordonnées du point H sont H(-1,-1)

Par conséquent la solution de ce système est

(-1,-1).

2) Résoudre graphiquement le système $\begin{cases} 2x - y = -3 \\ 4x - 2y = 2 \end{cases}$

Ecrivons les équations du système sous forme d'équations réduites de deux droites : (D_1) : y = 2x + 3 et

 (D_2) : y=2x-1. Donc on constate que les coefficients directeurs des deux droites (D_1) et (D_2) ont le même coefficient directeur d'où les droites (D_1) et (D_2) sont parallèles. Traçons les droites (D_1) et (D_2) dans un repère

orthonormé (O; I, J).

(D_1)	х	У
A(0,3)	0	3
B(-1,1)	-1	1

(D_2)	х	у
E(0,-1)	0	-1
F(1,1)	1	1

On constate donc que les droites $\left(D_1\right)$ et $\left(D_2\right)$ sont parallèles Et n'ont pas de points communs d'où elles n'ont pas de points

D'intersection par conséquent le système $\begin{cases} 2x - y = -3 \\ 4x - 2y = 2 \end{cases}$

n'admet pas de solution

<u>IV – Résolution des problèmes</u>

Méthode de résolution d'un problème

La résolution d'un problème se déroule en cinq étapes comme suit :

- Choix des inconnues
- Mise en système
- Résolution du système algébriquement
- Interprétation des résultats dans le contexte du problème
- Vérification

Exemples

1) Déterminer deux nombres dont la somme est égale à 5980 et dont la différence est égale à 1290.

Réponse

- * Choix des inconnues : On pose le premier nombre x et le deuxième nombre y .
- * Mise en équations : la somme des nombres est égale à 5980 donc : x + y = 5980

La différence des nombres est égale à 1290 donc : x - y = 1290

* Résolution du systèmes $\begin{cases} x + y = 5980 \\ x - y = 1290 \end{cases}$

En additionnant les deux équations du système : x + y + x - y = 5980 + 1290 donc 2x = 7260 d'où x = 3635

Et comme y = x - 1290 donc y = 3635 - 1290 = 2345 d'où y = 2345

* Conclusion : Alors les nombres dont la somme est égale à 5980 et dont la différence est égale à 1290 sont : 3635 et 2345

2) On dispose de 21 pièces de monnaie les unes de 5 dh et les autres pièces de 10 dh.

La somme totale dont on dispose est de 150 dh.

De combien de pièces de chaque sorte dispose-t-on?

<u>Réponse</u>

* Choix des inconnues:

On pose x le nombre des pièces de 5dh, et on pose y le nombre de pièces de 10dh.

* Mise en équations :

• On a :
$$x + y = 21$$

• Et on a :
$$5x + 10y = 165$$

* Résolution du système
$$\begin{cases} x + y = 21 \\ 5x + 10y = 165 \end{cases}$$

Utilisons la méthode de résolution par substitution : on a y = 21 - x et on remplace dans la deuxième équation

$$5x+10(21-x)=165$$
 donc $210-5x=165$ d'où $5x=45$ par suite $x=9$

Et on a y = 21 - x = 21 - 9 = 12. Alors (9,12) est la solution de ce système

* Conclusion:

On dispose de 9 pièces de 5dh et de 12 pièces de 10dh.