

On rappelle que $(M_3(\mathbb{R}),+,\times)$ est un anneau unitaire On pose

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} \ et \ B = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

Et
$$E = \{ M \in M_3(\mathbb{R}) / M = aI_3 + bA + cB; (a; b; c) \in \mathbb{R}^3 \}$$

1/ a/ Montrer que : $A \times B = B \times A = 2I_3$ puis déterminer A^{-1} et B^{-1}

b/ Montrer que : $A^2 = B$ et $B^2 = 2A$

2/ a/ Montrer que E est stable dans $(M_3(\mathbb{R}), \times)$

b/ Montrer que $(E, +, \times)$ est un anneau unitaire commutatif

c/ Factoriser $A^3 - 2I_3$

On rappelle que $(M_2(\mathbb{R}),+, imes)$ est un anneau unitaire et que $(\mathbb{C},+, imes)$ est un corps commutatif

On pose :
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 ; $J = \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix}$ et $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et on considère l'ensemble :

$$\mathcal{F} = \left\{ M(a,b) = \begin{pmatrix} a & -b \\ 3b & a-2b \end{pmatrix} / (a,b) \in \mathbb{R}^2 \right\}$$

/ Montrer que :
$$\forall (a;b;c;d) \in \mathbb{R}^4; \ M(a,b) \times M(c,d) = M(ac-3bd,ad+bc-2bd)$$

b/ En déduire que \mathscr{E} est stable dans $\left(\mathscr{M}_{2}\left(\mathbb{R}\right), imes
ight)$

2/ On considère l'application

$$\begin{array}{ccc}
f: \mathcal{Z} & \to & \mathbb{C} \\
M(a,b) & \mapsto & (a-b)+ib\sqrt{2} \\
\end{array}$$

a/ Montrer que $\, {
m f} \,$ est une application bijective de $\, {\mathcal E} \,$ vers $\, {\mathbb C} \,$ et déterminer son application réciproque f^{-1}

b/ Montrer que f est un homomorphisme de $\left(\mathcal{Z}^*, \times\right)$ $vers\left(\mathbb{C}^*, \times\right)$

3/ Monter que $\left(\mathcal{F}$,+,× $\right)$ est un corps commutatif

4/ a/ Soit (a;b) $de \mathbb{R}^2$ tel que $(a;b) \neq (0;0)$

Déterminer la matrice inverse de la matrice M(a,b)

b/ Résoudre dans \mathcal{E} l'équation : $X^2 = M(-1,0)$

Exercice 3

Soit $(A, +, \times)$ un anneau unitaire tel que pour tout $x \in A$, on $a : x^{12} = x$. On note 0 l'élément neutre de + et 1 l'élément neutre de ×.

1) Montrer que : $(\forall x \in A)$, x = -x

2) Montrer que : $(\forall x \in A)$, $x^8 + x^4 = 0$ (Remarquer que : $(x+1)^{12} = x+1$)

3) Montrer que : $(\forall x \in A)$, $x^2 = x$

I-Pour tout x et y de $\mathbb{R} - \left\{ \frac{1}{2} \right\}$, on pose : x * y = x + y - 2xy

1/Montrer que *est une loi de composition interne dans $\mathbb{R} - \left\{ \frac{1}{2} \right\}$

2/Montrer que * est commutative et associative

3/Montrer que $\left(\mathbb{R} - \left\{\frac{1}{2}\right\}, *\right)$ est un groupe commutatif (ou abélien)

4/Montrer que : $\forall x \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$; $\forall n \in \mathbb{N} - \{0, 1\}$; $\underbrace{x * x * \dots * x}_{n \text{ fois}} = \frac{1}{2} \left[1 - \left(1 - 2x \right)^n \right]$

II-Pour tout x de $\mathbb{R} - \left\{ \frac{1}{2} \right\}$ on pose $A(x) = \begin{bmatrix} 1-x & 0 & x \\ 0 & 1 & 0 \\ x & 0 & 1-x \end{bmatrix}$ et $E = \left\{ A(x) / x \in \mathbb{R} - \left\{ \frac{1}{2} \right\} \right\}$ II-Pour tout x ue $_{\mathbb{R}^{\times}}$ (2)

1/Montrer que E est une partie stable de $(\mathcal{M}_3(\mathbb{R}), \times)$ $\cdots \qquad f : \mathbb{R} - \left\{\frac{1}{2}\right\} \rightarrow E$

2/On considère l'application $f: \mathbb{R} - \left\{\frac{1}{2}\right\} \to E$

a/Montrer que f est un isomorphisme de $\left(\mathbb{R}-\left\{\frac{1}{2}\right\},*\right)$ dans (E,\times)

b/En déduire la structure algébrique de (E, imes)

c/On pose $B = A\left(-\frac{1}{2}\right)$. Soit n de \mathbb{N}^* . Montrer que :

$$B^{n} = A\left(\frac{1-2^{n}}{2}\right) et \left(B^{n}\right)^{-1} = A\left(\frac{1}{2} - \frac{1}{2^{n+1}}\right)$$

Exercice 5

Partie I:

Pour tout couple (a,b) de \mathbb{R}^2 , on considère la matrice $M_{(a,b)}=\begin{pmatrix} a+b & -b \\ b & a \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$.

Soit \mathcal{E} l'ensemble des matrices : $\mathcal{E} = \left\{ M_{(a,b)} \, / \, (a,b) \in \mathbb{R}^2 \right\}$.

On rappelle que $(\mathcal{M}_2(\mathbb{R}), +, \times)$ est un anneau unitaire.

- 1) Montrer que \mathcal{E} est une partie stable de $(\mathcal{M}_2(\mathbb{R}), +)$ et de $(\mathcal{M}_2(\mathbb{R}), \times)$.
- 2) Montrer que $(\mathcal{L}, +, \times)$ est un anneau commutatif unitaire.
- 3) a) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a : $x^2 + xy + y^2 = 0 \iff x = y = 0$
 - b) Déterminer les matrices de \mathcal{E} qui admettent des inverses dans l'anneau $(\mathcal{E}, +, \times)$.
 - c) En déduire que $(\mathcal{F}, +, \times)$ est un corps commutatif.

Partie II:

Soit σ un nombre complexe n'appartenant pas à $\mathbb R$.

- 1) Montrer que $(1, \sigma)$ est une base de l'espace vectoriel réel $(\mathbb{C}, +, \bullet)$.
- 2) On considère l'application $\,\psi\,$ définie de $\,\mathcal{E}\,$ vers $\,\mathbb{C}\,$ comme suit :

https://www.dimamath.com

$$M_{(a,b)} \mapsto a + \sigma b$$

Montrer que ψ est un homomorphisme bijectif de $\left(\mathcal{E},+\right)$ vers $\left(\mathbb{C},+\right).$

- 3) On considère dans $\mathbb C$ l'équation : $z^2-z+1=0$. Résoudre dans $\mathbb C$ cette équation et donner ses solutions sous la forme trigonométrique..
- 4) On suppose dans cette question que : $\sigma = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Montrer que ψ est un homomorphisme de (\mathcal{E},\times) vers (\mathbb{C},\times) .

