https://www.dimamath.com

Exercice 1

Soit $n \in \mathbb{N}^*$ et soit la fonction numérique f_n définie sur \mathbb{R} par : $f_n(x) = x^n + 1 - 2e^{-x}$

- 1) a) Dresser le tableau de variation de la fonction $\,f_n\,$
 - b) Montrer que l'équation $f_n(x)=0$ admet une unique solution α_n dans \mathbb{R}^+ , puis vérifier que : $(\forall n \in \mathbb{N}^*): 0 < \alpha_n < \ln 2$
- 2) a) Prouver que : $(\forall n \in \mathbb{N}^*)$: $f_{n+1}(\alpha_n) = \alpha_n^n(\alpha_n 1)$
 - b) Déterminer la monotonie de la suite numérique $(\alpha_n)_{n\geq 1}$ puis déduire qu'elle est convergente
 - c) Montrer que $\lim_{n \to +\infty} \alpha_n^n = 0$ puis déduire $\lim_{n \to +\infty} \alpha_n$.

Exercice 2

Partie I:

On considère la fonction numérique $\,g\,$ définie sur l'intervalle $\,I=\left]0,+\infty\right[$ par :

$$g(x) = \ln x + (x-1)e^x + 1$$

- 1) a) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - b) Déterminer les branches infinies de la courbe représentative $\left(C_{g}
 ight)$ de la fonction $\,g\,$.
- 2) a) Montrer que la fonction g est dérivable sur l'intervalle I , puis calculer g '(x) pour tout x de I .
 - b) Dresser le tableau de variation de la fonction g .
- 3) a) Démontrer que $(\forall x \in]0,1]$: $g(x) \le x$ et que $(\forall x \in]1,+\infty[)$: g(x) > x.
 - b) Construire la courbe $\left(C_{g}
 ight)$ dans un repère orthonormé $\left(O; \vec{i}\,, \vec{j}
 ight)$.

Partie II:

- 1) a) Montrer que la fonction $\,g\,$ est une bijection de l'intervalle $\,I\,$ dans $\,\mathbb{R}\,$.
 - b) Montrer que sa fonction réciproque g^{-1} est dérivable sur $\mathbb R$ puis calculer $\left(g^{-1}\right)'(1)$.
- 2) On considère la suite numérique (u_n) définie par : $u_0=2$ et $(\forall n\in\mathbb{N})$ $u_{n+1}=g^{-1}(u_n)$
 - a) Montrer que : $(\forall n \in \mathbb{N})$; $u_n > 1$
 - b) Montrer que la suite (u_n) est convergente puis calculer sa limite.
 - c) Calculer $\lim_{n\to+\infty} \left(\frac{u_{n+1}-1}{u_n-1} \right)$

Partie III:

On considère la fonction numérique $\,f\,$ définie sur l'intervalle $\,\left[0,+\infty\right[\,$ par :

$$\begin{cases} f(x) = x \ln x + (x-2)e^x - x \text{ ; si } x > 0 \\ f(0) = 2 \end{cases}$$

1) a) Montrer que la fonction f est continue sur $[0,+\infty[$.

- b) Etudier la dérivabilité de la fonction $\,f\,$ à droite en 0 et interpréter ce résultat géométriquement.
- 2) a) Calculer $\lim_{x \to +\infty} f(x)$
 - b) Exprimer f'(x) en fonction de g(x) pour tout $]0,+\infty[$.
 - c) Dresser le tableau de variation de la fonction $\,f\,$.
 - d) Donner en justifiant la réponse, le nombre de solutions dans l'intervalle $\,]0,+\infty[\,$ de l'équation :

$$1 + x \ln x = (x-2)(1-e^x)$$

Exercice 3

Partie I:

- 1) a) Montrer que : $(\forall x \in]0, +\infty[)$: $x > 2 \ln x$.
 - b) Déduire que : $(\forall x \in]0, +\infty[)$: $x + \ln x > 0$
- 2) On pose pour tout $x \text{ de }]0, +\infty[: g(x) = x \ln^2 x.$
 - a) Montrer que la fonction g est strictement croissante sur $]0,+\infty[$ et que $\lim_{x\to +\infty}g(x)=+\infty$
 - b) Déduire que l'équation g(x) = 0 admet une unique solution α dans $]0, +\infty[$ puis vérifier que $\alpha < 1$.
 - c) Etudier le signe de g(x) suivant les valeurs de x de $\left]0,+\infty\right[$

Partie II:

On considère la fonction numérique f définie sur \mathbb{R}^+ par : $\begin{cases} f(x) = \frac{x \ln x}{x - \ln x}; \ x > 0 \\ f(0) = 0 \end{cases}$

Et soit $\left(C_f
ight)$ sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}\,, \vec{j}\,
ight)$.

- 1) a) Montrer que la fonction f est continue sur l'intervalle $[0,+\infty[$.
 - b) Etudier la dérivabilité de la fonction $\,f\,$ à droite en 0 et interpréter ce résultat géométriquement.
- 2) a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Que peut-on dire de la courbe $\left(C_f\right)$?
 - b) Montrer que : $(\exists \beta \in]0,1[):f'(\beta)=0$
 - c) Montrer que : $(\forall x \in]0, +\infty[)$; $f'(x) = \frac{x \ln^2 x}{(x \ln x)^2}$ et en déduire que $\beta = \alpha$.
- 3) a) Dresser le tableau de variation de la fonction $\,f\,$.
 - b) Montrer que $f(\alpha) = \frac{-\alpha}{1 + \sqrt{\alpha}}$
 - c) Prouver que $(\forall x \in]0, +\infty[)$; f(x) < x
 - d) Construire la courbe $\left(C_f\right)$ (On prendra $\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2\,cm$; $\alpha \simeq 0.5\,et\,f(\alpha) \simeq -0.3$)

https://www.dimamath.com

Partie III:

Soit h la restriction de f sur l'intervalle $I = [1, +\infty]$.

- 1) a) Montrer que $\,h\,$ admet une fonction réciproque $\,h^{-1}\,$ définie sur un intervalle $\,J\,$ que l'on Déterminera.
 - b) Montrer que $\,h^{-1}\,$ est dérivable sur $\,J\,$ puis calculer $\Big(h^{-1}\Big)'\Big(rac{e}{e-1}\Big)$
 - c) Construire la courbe $\left(C_{\boldsymbol{h}^{\!-\!1}}\right)$ dans le même repère $\left(O;\vec{i}\,,\vec{j}\right)$.
- 2) a) Montrer que : $(\forall n \in \mathbb{N}^*)(\exists ! a_n \in]1, +\infty[) : h(a_n) = \frac{1}{n}$
 - b) Montrer que la suite $(a_n)_{n\geq 1}$ est strictement croissante .
 - c) Montrer que $\lim_{n\to +\infty} a_n = 1$ puis calculer $\lim_{n\to +\infty} n \ln \left(a_n\right)$.
- 3) On pose $\varphi(x) = \sqrt[3]{f(x)}$
 - a) Déterminer $D_{\scriptscriptstyle (\!arphi\!)}$ l'ensemble de définition de la fonction $\,\phi$.
 - b) Etudier la dérivabilité de la fonction (p à droite en 1.
 - c) Etudier le sens de variation de la fonction ϕ sur $D_{\scriptscriptstyle
 m O}$.