

Partie A:

On considère la fonction numérique g définie par : $g(x) = \frac{x}{x+2} + \ln(x+2) - \ln x$

1/ a/ Montrer que $\,g\,$ est définie sur $\,\left]0;+\infty\right[\,$

b/ Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$

2/ a/ Montrer que :
$$\forall x \in]0; +\infty[; g'(x) = -\frac{4}{x(x+2)^2}]$$

b/ Etudier les variations de la fonction g et dresser son tableau de variation

3/ Justifier que : $\forall x \in]0; +\infty[; g(x) > 1]$

Partie B:

Soit f la fonction numérique définie sur l'intervalle $[0;+\infty[$ par :

$$\begin{cases} f(x) = x \left[\ln(x+2) - \ln x \right]; si x > 0 \\ f(0) = 0 \end{cases}$$

on note $\left(C_f
ight)$ sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}, \vec{j}
ight)$ (unité graphique 2cm)

1/ a/ Etudier la continuité de f à droite de 0

b/ Etudier la dérivabilité de la fonction f à droite de 0 et donner une interprétation graphique de ce résultat.

2/ a/ Montrer que :
$$\forall x \in]0; +\infty[; f(x) = 2 \times \frac{\ln(1 + \frac{2}{x})}{\frac{2}{x}}$$

b/ En déduire $\lim_{x\to +\infty} f(x)$ puis interpréter ce résultat graphiquement

3/ a/ Montrer que :
$$\forall x \in]0; +\infty[; f'(x) = g(x) - 1]$$

b/ Etudier les variations de $\,f\,$ et dresser son tableau de variation

4/ a/ Donner l'équation de la tangente (T) à la courbe $\left(C_f\right)$ au point d'abscisse 1

b/ Construire (T) et $\left(C_f
ight)$ dans le même repère

Partie C:

1/ justifier que la fonction $\,f\,$ admet une fonction réciproque $\,f^{^{-1}}\,$ définie sur un intervalle J à déterminer

2/ a/ Calculer
$$f^{-1}(\ln 3)$$
 et $(f^{-1})'(\ln 3)$

b/ Construire dans le même repère la courbe (C') représentative de f^{-1}

Exercice 2

I - On considère la fonction g définie sur $0; +\infty$ par : $g(x) = x^2 + x - 2 + 2\ln x$

1) Calculer les limites de la fonction g aux bornes de son domaine de définition

https://www.dimamath.com

- 2) Etudier les variations de la fonction g et dresser son tableau de variation
- 3) Montrer que la seule solution de l'équation g(x) = 0 est $x_0 = 1$ puis donner le signe de g(x).
- $\text{II On considère la fonction } f \text{ définie sur } \left]0; +\infty\right[\text{ par : } f\left(x\right) = x + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{satisfies to the sum } \left[x + \frac{1}{x}\right] + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies to the sum } \left[x + \frac{1}{x}\right] + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies to the sum } \left[x + \frac{1}{x}\right] + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies to the sum } \left[x + \frac{1}{x}\right] + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ , et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) \text{ satisfies } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{2}{x}\right) \ln x \text{ . et soit } \left(C_f\right) + \left(1 \frac{$

courbe représentative dans un repère orthonormé $\left(O; \vec{i}\;, \vec{j}\;\right)$ (d'unité graphique : 1 cm)

- 1) Calculer $\lim_{x\to 0^+} f(x)$ et interpréter le résultat géométriquement
- 2) Calculer $\lim_{x \to +\infty} f(x)$ et étudier la branche infinie de la courbe (C_f) au voisinage de $+\infty$
- 3) a) Montrer que : $\forall x \in]0; +\infty[; f'(x) = \frac{g(x)}{x^2}]$
 - b) Etudier les variations de la fonction $\,f\,$ et dresser son tableau de variation
- 4) a) Résoudre dans l'intervalle $]0; +\infty[$ l'équation : $(1-\frac{2}{x}) \ln x = 0$
 - b) En déduire que la droite (D) d'équation y=x , coupe la courbe (C_f) en deux points dont on déterminera les coordonnées
 - c) Etudier la position relative de la courbe $\left(C_{\scriptscriptstyle f}\right)$ par rapport à la droite $\left(D\right)$
- 5) a) Calculer f'(1) et donner une interprétation graphique à ce résultat
 - b) Construire la courbe (C_f) et la droite (D).
- C- On considère la suite numérique (u_n) définie par

$$u_0 = \sqrt{3} \ et u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}$$

- 1) Montrer par récurrence que : $\forall n \in \mathbb{N}; 1 \le u_n \le 2$
- 2) Montrer que la suite (u_n) est décroissante
- 3) En déduire que la suite (u_n) est convergente et calculer sa limite.

Exercice 3

On considère la fonction f définie par : $\begin{cases} f(x) = x - \frac{2x}{\ln x}, \ x \in]0; 1[\ \cup \]1; + \infty[\\ f(0) = 0 \end{cases}$

Soit $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}\,, \vec{j}\,\right)$.

1/ Déterminer $\,D$ l'ensemble de définition de la fonction $\,f\,$.

2/ a/ Calculer les limites de f aux bornes de D .

b/ Etudier les branches infinies de la courbe $\left(C_f
ight)$.

3/ a/ Montrer que f est continue en 0 à droite .

b/ Etudier la dérivabilité de f à droite en 0 et interpréter graphiquement ce résultat .

4/ a/ Montrer que :

https://www.dimamath.com

$$(\forall x \in]0;1[\cup]1;+\infty[); f'(x) = \frac{(\ln x)^2 - 2\ln x + 2}{(\ln x)^2}$$

b/ Etudier les variations de f et dresser son tableau de variation .

5/ a/ Montrer que :
$$(\forall x \in]0;1[\cup]1;+\infty[); f''(x) = \frac{2(\ln x - 2)}{x(\ln x)^3}$$

b/ Etudier la concavité de la courbe (C_f) .

6/ a/ Déterminer l'équation de la tangente $\left(T\right)$ à la courbe $\left(C_{f}\right)$ Au point d'abscisse $x_{0}=e$.

b/ Construire dans le repère $\left(O; \vec{i}\,, \vec{j}\,\right)$ la droite $\left(T\,
ight)$ et la courbe $\left(C_f\,
ight)$.

