https://www.dimamath.com

On considère la fonction g définie sur \mathbb{R} par : $g(x) = \frac{e^x - 1}{e^x + 1}$

On note par $\left(C_g
ight)$ sa courbe représentative dans un repère orthonormé $\left(\mathrm{O}; \vec{i}, \vec{j}
ight)$.

- 1) Etudier les variations de la fonction g et dresser son tableau de variation
- 2) Etudier les branches infinies de la courbe $\left(C_{g}
 ight)$
- 3) Etudier la parité de la fonction g
- 4) Construire la courbe (C_g)
- 5) Montrer que : $(\forall (x, y) \in \mathbb{R}^2)$, $g(x+y) = \frac{g(x) + g(y)}{1 + g(x)g(y)}$
- a) Montrer que la fonction g est une bijection.
 b) Déterminer l'expression de $g^{-1}(x)$ pour tout $x \in]-1,1[$ $(x-1)^{2}(x)$ pour tout $x \in]-1,1[$ 6) a) Montrer que la fonction $\,g\,$ est une bijection de $\,\mathbb{R}\,$ dans l'intervalle $\,\left]-1,1\right[\,$

 - d) Construire dans le même repère, la courbe $\left(C_{g^{^{-1}}}
 ight)$

Exercice 2

I – Soit $n \in \mathbb{N}^*$. On considère la fonction numérique g_n définie sur \mathbb{R} par : $g_n(x) = x + e^{-nx}$, et soit (C_n) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) a) Etudier les variations de la fonction g_n
 - b) Montrer que la fonction g_n admet une valeur minimale d'abscisse un nombre réel u_n que l'on déterminera en fonction de n.
- 2) a) Calculer les limites de g_n en $+\infty$ et en $-\infty$
 - b) Déterminer les deux branches infinies de la courbe (C_n) .
- 3) a) Etudier la position relative des deux courbes (C_1) et (C_2)
 - b) Construire les courbes $\left(C_{1}\right)$ et $\left(C_{2}\right)$ dans le repère $\left(O,\vec{i},\vec{j}\right)$. (On prend $\left\|\vec{i}\right\|=2cm$ et $\ln2\simeq0,7$)
- 4) a) En utilisant une intégration par partie, calculer en fonction de x l'intégrale : $I(x) = \int_{0}^{x} t e^{-2t} dt$
 - b) Soit h_2 la restriction de g_2 sur l'intervalle $[0, \ln 2]$. Calculer Le volume du solide donné par la rotation de la courbe de la fonction $\,h_2\,$ autour de l'axe abscisses
- 5) On pose $v_n = g_n(u_n)$.

Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont convergentes et calculer leurs limites

- II On considère la fonction f_n définie sur $\mathbb R$ par : $f_n(x) = x + e^{nx}$
 - 1) Etudier les variations de la fonction f_n

1

https://www.dimamath.com

- 2) En déduire que l'équation $f_n(x)=0$ admet une unique solution α_n dans $\mathbb R$.
- 3) a) Montrer que $\alpha_1 \in \left[-\ln 2, -\frac{1}{2}\right]$
 - b) Montrer que les deux expressions $\left(x-\alpha_1\right)et\left(e^x+\alpha_1\right)$ ont le même signe sur $\mathbb R$
- 4) a) Soit φ la fonction numérique définie sur l'intervalle $\left|-\infty, -\frac{1}{2}\right|$ par : $\varphi(x) = e^x \frac{1}{\sqrt{a}}x$.

Montrer que la fonction φ est décroissante sur l'intervalle $\left|-\infty, -\frac{1}{2}\right|$.

- b) En déduire que : $\left(\forall x \in \left| -\infty, -\frac{1}{2} \right| \right), \left| e^x + \alpha_1 \right| \leq \frac{1}{\sqrt{e}} \left| x \alpha_1 \right|$
- 5) On pose: $\beta_0 = -\frac{1}{2}$ et pour tout entier naturel $n: \beta_{n+1} = e^{-\beta_n}$
 - a) Montrer qu'il existe $a\in\mathbb{R}$ tel que : $(\forall n\in\mathbb{N}), \left|\beta_{n+1}-\alpha_1\right|\leq a\left|\beta_n-\alpha_1\right|$
 - b) Montrer que la suite (β_n) est convergente et calculer sa limite

Exercice 3

Partie I:

Soit $n \in \mathbb{N}$ tel que $n \ge 3$.

On considère la fonction g_n définie sur l'intervalle $]0,+\infty[$ par : $g_n(x) = nx + 2\ln x$.

- 1) Dresser le tableau de variation de la fonction g_n .
- 2) Montrer que : $(\forall x \in]0, +\infty[), \sqrt{x} > \ln x$
- 3) a) Montrer que l'équation $g_n(x) = 0$ admet une unique solution α_n dans l'intervalle $]0,+\infty[$ et que :

$$\frac{1}{n} < \alpha_n < \frac{1}{\sqrt{n}}$$

b) Calculer $\lim_{n \to +\infty} \alpha_n$

Partie II:

A – Soit f la fonction définie sur \mathbb{R}^+ par : $f(x) = \sqrt[3]{x} e^{-x}$

Et soit (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) ($\|\vec{i}\| = \|\vec{j}\| = 3cm$)

- 1) Etudier la dérivabilité de la fonction f à droite en 0 et donner une interprétation graphique au Résultat obtenu.
- 2) Calculer $\lim_{x \to \infty} f(x)$ et donner une interprétation graphique au résultat obtenu.
- 3) a) Montrer que : $(\forall x \in]0, +\infty[), f'(x) = \left(\frac{1-3x}{3x}\right)f(x)$
 - b) Dresser le tableau de variation de la fonction f.
- 4) Construire la courbe (C_f) . (On prend : $f(\frac{1}{3}) \approx 0.5$)

https://www.dimamath.com

B – On pose : $I = \begin{bmatrix} \frac{1}{3}, 1 \end{bmatrix}$

- 1) a) Montrer que : f(I) = I
 - b) Montrer que : $(\forall x \in I)$, $|f'(x)| \le \frac{2}{3}$
 - c) Montrer que : $\lceil (f(x) = x \ et \ x > 0) \Leftrightarrow x = \alpha_3 \rceil$ (où α_3 est la solution de l'équation $g_3(x) = 0$)
- 2) Soit $\left(u_{n}\right)$ la suite numérique définie par : $u_{0}=\frac{1}{3}$ et $\left(\forall n\in\mathbb{N}\right)$, $u_{n+1}=f\left(u_{n}\right)$
 - a) Montrer que : $(\forall n \in \mathbb{N})$, $u_n \in I$
 - b) Montrer que : $(\forall n \in \mathbb{N})$, $|u_{n+1} \alpha_3| = \frac{2}{3}|u_n \alpha_3|$
 - c) En déduire que : $(\forall n \in \mathbb{N}), |u_n \alpha_3| = \left(\frac{2}{3}\right)^{n+1}$
 - d) Montrer que la suite (u_n) est convergente et calculer sa limite.

