<u>3.// W W W.dillia</u>

<u>1 – Les rapports trigonométriques d'un angle aigu</u>

Définitions

Dans un triangle ABC rectangle en A

★ Le cosinus d'un angle aigu est égal au quotient du côté adjacent sur l'hypoténuse

Autrement dit : $\cos(\hat{B}) = \cos(ABC) = \frac{\text{côt\'e adjacent}}{\text{Hypot\'enuse}} = \frac{\text{AB}}{\text{BC}}$

 $\bigstar~$ Le sinus d'un angle aigu est égal au quotient du côté opposé sur l'hypoténuse

Autrement dit : $\sin(\hat{B}) = \sin(ABC) = \frac{\text{côt\'e oppos\'e}}{\text{Hypot\'enuse}} = \frac{\text{AC}}{\text{BC}}$

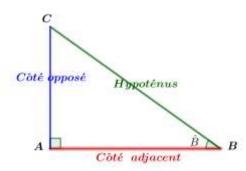
★ La tangente d'un angle aigu est égal au quotient du côté opposé sur le côté adjacent

Autrement dit : $\tan(\hat{B}) = \tan(ABC) = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}} = \frac{AC}{AB}$

Remarques

Dans un triangle ABC rectangle en A, on a:

- lacktriangle Le côté adjacent à l'angle $\Big(ABC\Big)$ est Le côté $\Big[AB\Big]$
- lacktriangle Le côté opposé à l'angle $\left(ABC\right)$ est Le côté $\left[AC\right]$
- ◆ L'hypoténuse du triangle ABC rectangle en A Est le côté [BC]



Propriétés

- ❖ Le cosinus et le sinus d'un angle aigu est compris entre 0 et 1
- ❖ La tangente d'un angle aigu est un réel positif

Exemples

- 1) Soit EFG un triangle rectangle en E tel que EF = 3 cm et EG = 4 cm
 - a) Calculer la longueur FG
 - b) Calculer $\cos(EFG)$, $\sin(EFG)$ et $\tan(EFG)$
- 2) Soit IJK un triangle rectangle en I tel que IJ = 5 cm et $\cos(IJK) = 0.8$
 - a) Calculer la longueur $\,{\rm JK}$
 - b) Calculer la longueur IK

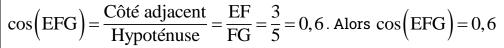
<u>Réponses</u>

1) a) Le triangle EFG est rectangle en E , donc d'après

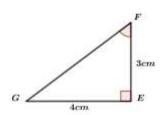
Le théorème de Pythagore on a : $FG^2 = EF^2 + EG^2 = 3^2 + 4^2 = 25$

D'où
$$FG = \sqrt{25} = 5$$
. Alors $FG = 5$ cm

b)Le triangle EFG est rectangle en E donc



$$sin(EFG) = \frac{cot\'{e} \ oppos\'{e}}{Hypot\'{e}nuse} = \frac{EG}{FG} = \frac{4}{5} = 0.8$$
 . Alors $sin(EFG) = 0.8$



$$\tan(EFG) = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}} = \frac{EG}{EF} = \frac{4}{3}$$
. Alors $\tan(EFG) = \frac{4}{3}$

2) a) Le triangle $\,IJK\,$ est rectangle en $\,I\,.\,$ Alors

$$\cos(IJK) = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}} = \frac{IJ}{JK} = \frac{5}{JK} = 0.8$$

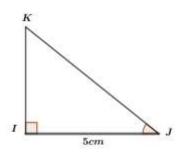
Donc JK =
$$\frac{5}{0.8}$$
 = 6.25. D'où JK = 6.25 *cm*

b) Le triangle IJK est rectangle en I , d'après le théorème

de Pythagore on a : $JK^2 = IJ^2 + IK^2$ alors

$$IK^2 = JK^2 - IJ^2 = (6,25)^2 - 5^2 = 14,0625$$

Donc IK = $\sqrt{14,0625}$ = 3,75 . D'où IK = 3,75 cm



<u> 2 – Formules trigonométriques</u>

Proposition 1

Soit la mesure d'un angle aigu. Alors :

$$\star \left(\cos(a)\right)^2 + \left(\sin(a)\right)^2 = 1$$

$$\star \tan(a) = \frac{\sin(a)}{\cos(a)}$$

Remarques

• On a aussi:
$$(\cos(a))^2 = 1 - (\sin(a))^2$$
 et $(\sin(a))^2 = 1 - (\cos(a))^2$

• On a aussi:
$$\sin(a) = \tan(a) \times \cos(a)$$
 et $\cos(a) = \frac{\sin(a)}{\tan(a)}$

<u>Exemple</u>

Soit x la mesure d'un angle aigu tel que $\cos x = 0.4$. Calculer $\sin x$ et $\tan x$

Réponse

On a
$$(\cos x)^2 + (\sin x)^2 = 1$$
 donc $\sin^2 x = 1 - \cos^2 x = 1 - (0, 4)^2 = 0.84$

Or x est la mesure d'un angle aigu donc $\sin x \ge 0$. Alors $\sin x = \sqrt{0.84} = 2\sqrt{0.21}$

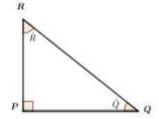
Et on a
$$\tan x = \frac{\sin x}{\cos x} = \frac{2\sqrt{0.21}}{0.4} = 5\sqrt{0.21}$$

Définition

Deux angles aigus sont dits **complémentaires** si et seulement si **la somme de leurs mesures est égale** à **90**°

Remarque

- Dans un triangle rectangle les deux angles, autres que l'angle droit, sont complémentaires
- Dans la figure ci-contre les angles
 R et O sont complémentaires



https://www.dimamath.ccom

Proposition 2

Soient a et b les mesures de deux angles complémentaires. Alors :

- $\star \cos a = \sin b$
- $\star \sin a = \cos b$
- $\star \tan a = \frac{1}{\tan b}$

Exemple

Soit x la mesure de l'angle complémentaire d'un angle de mesure 40°. Calculer $\cos x$, $\sin x$ et $\tan x$.

<u>Réponse</u>

Puisque x et 40° sont les mesures de deux angles complémentaires, alors :

$$\cos x = \sin 40^\circ, \sin x = \cos 40^\circ \text{ et } \tan x = \frac{1}{\tan 40^\circ}$$

