S. EL JAAFARI

Puissance d'un nombre rationnel

1 – Puissance à exposant positif

Définition

Soit a un nombre rationnel non nul et n un entier naturel non nul. On pose :

$$\underbrace{a \times a \times a \times ... \times a}_{n \text{ fois}} = a^n$$

 a^n : se lit « a puissance n ou a exposant n »

a: « est la base de la puissance a^n »

n: « est l'exposant de la puissance a^n »

$$a^1 = a$$

et
$$a^0 = 1$$
 si $a \neq 0$

 $a^2 = a \times a$; a^2 se lit « le carré de a » ou « a au carré »

 $a^3 = a \times a \times a$; a^3 se lit « le cube de a » ou « a au cube »

- $5 \times 5 \times 5 \times 5 = 5^4$ se lit « 5 puissance 4 » ou « 5 exposant 4 »
- $(-3,5) \times (-3,5) = (-3,5)^2$
- $10^5 = 10 \times 10 \times 10 \times 10 \times 10$
- $\bullet \left(\frac{2}{5}\right)^3 = \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} = \frac{8}{125}$

<u> 2 – Puissance à exposant négatif</u>

Définition

Soient x et $\frac{a}{b}$ deux nombres rationnels non nuls et n un entier naturel non nul.

$$x^{-n} = \frac{1}{x^n}$$
 et $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

Exemples

- $4^{-3} = \frac{1}{4^3} = \frac{1}{64}$
- $(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}$
- \bullet $\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^3 = \frac{27}{8}$
- $\bullet \left(-\frac{13}{25}\right)^{-2} = \left(-\frac{25}{13}\right)^2$

<u> 3 – Signe d'une puissance</u>

Soit a un nombre rationnel et n un nombre entier non nul. Alors, on a :

Signe de $\it a$	Parité de $\it n$	Signe de a^n
Négatif	Pair	Positif

https://www.dimamath.ccom

	Impair	Négatif
Positif	quelconque	positif

Exemples

- 12³⁴ est un nombre rationnel positif car 12 est positif
- $(-24)^{32} = 24^{32}$ est un nombre rationnel positif car son exposant est pair
- $(-17)^{51} = -17^{51}$ est un nombre négatif car sa base (-17) est négatif et son exposant est impair

<u>II – Opérations sur les puissances</u>

Soit a un nombre rationnel et n et m deux entiers naturels non nuls. Alors, on a :

$$a^n \times a^m = a^{n+m} \text{ et } a^{n+m} = a^n \times a^m$$

- \bullet $2^3 \times 2^4 = 2^{3+4} = 2^7$
- $(-3)^2 \times (-3)^3 = (-3)^{2+3} = (-3)^5$
- $\bullet \quad \frac{5^4}{5^2} = 5^{4-2} = 5^2$

Rèale 2

Soit a et b deux nombres relatifs et $\,n$ un entier naturel non nul. Alors, on a :

$$a^n \times b^n = (a \times b)^n \quad \text{et} \quad (a \times b)^n = a^n \times b^n$$

<u> III – Ecriture scientifique d'un nombre décimal</u>

Règle

Soit n un entier naturel non nul. On a :

$$\bullet$$
 $10^n = 1 \underbrace{000...0}_{n \text{ fois } 0}$

$$• 10^{-n} = \underbrace{0,000...01}_{n \text{ fois } 0}$$

Exemples

- $10^4 = 10000$
- $10^0 = 1$
- \bullet 10⁻⁵ = 0,00001

https://www.dimamath.ccom

<u>Définition</u>

Soit a un nombre rationnel et n un nombre entier relatif non nul.

Toute écriture de la forme : $x = a \times 10^n$ ou $x = -a \times 10^n$ avec $1 \le a < 10$ s'appelle « **l'écriture** scientifique de x »

Exemples

- L'écriture scientifique de x = 2581 est $x = 2,581 \times 10^3$
- L'écriture scientifique de x = 0.0000263 est $x = 2.63 \times 10^{-5}$

<u>Ordre de grandeur</u>						
Ecriture scientifique	Encadrement par deux puissances successives de 10	Un ordre de grandeur				
$A = 5,16 \times 10^7$	$10^7 < A < 10^8$	5×10^7				
$B = 7,25 \times 10^{-4}$	$10^{-5} < B < 10^{-4}$	7×10^{-5}				

