https://www.dimamath.com

On considère la fonction f définie par : $f(x) = \sqrt{x^2 - x - 2}$ et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1) Déterminer $D_{\scriptscriptstyle f}$, l'ensemble de définition de la fonction f
- 2) Montrer que la droite d'équation $x = \frac{1}{2}$, est un axe de symétrie de la courbe (C_f) .
- 3) Soit g la restriction de la fonction f à l'intervalle $[2,+\infty[$ Montrer que g est une bijection de l'intervalle $[2,+\infty[$ vers \mathbb{R}^+
- 4) Montrer que la fonction f est croissante sur l'intervalle $[2,+\infty[$
- 5) Déduire que la fonction f est décroissante sur l'intervalle $\left]-\infty,-1\right]$

Exercice 2

On considère la fonction f définie par : $f(x) = \sqrt{x - E(x)}$ et soit $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}, \vec{j}\right)$.

- 1) Déterminer $\,D_f\,$, l'ensemble de définition de la fonction $\,f\,$
- 2) Montrer que la fonction $\,f\,$ est bornée sur $\,D_{\scriptscriptstyle f}\,$
- 3) Montrer que la fonction f est périodique de période 1
- 4) a) Donner l'expression de f(x) pour tout $x \in [-2,2]$
 - b) Construire la courbe $\left(C_{f}
 ight)$ sur l'intervalle $\left[-2,2\right[$

Exercice 3

On considère la fonction f définie sur \mathbb{R} par : $\begin{cases} f \text{ est paire} \\ f(x) = 1 - x^2 \text{ ; } x \in [0,1[\\ f(x) = \frac{x-1}{x} \text{ ; } x \in [1,+\infty[\\ x \in [0,1]] \end{cases}$

et soit $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O;\vec{i}\,,\vec{j}\,\right)$.

- 1) Dresser le tableau de variations de la fonction f
- 2) Construire la courbe $\left(C_{_f}
 ight)$
- 3) Calculer $f \circ f(0)$ et $f \circ f(1)$
- 4) Déterminer l'expression de $f\circ f(x)$ pour tout $x\in\mathbb{R}$

Exercice 4

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 2\cos^2 x$ et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) Etudier la parité de la fonction f

https://www.dimamath.com

2) Montrer que la fonction f est périodique de période π , puis déterminer le domaine d'étude $D_{\!\scriptscriptstyle E}$ de la fonction f

3) Dresser le tableau de variations de la fonction $\,f\,$ sur $\,D_{\!\scriptscriptstyle E}$

4) Construire la courbe $\left(C_{f}\right)$ sur l'intervalle $\left[-\pi,\pi\right]$

Exercice 5

On considère la fonction f définie par : $f(x) = x + 1 - 2\sqrt{x+1}$

1) Déterminer $D_{\scriptscriptstyle f}$, l'ensemble de définition de la fonction f

2) a) Montrer que : $(\forall x \in D_f)$; $f(x) \ge -1$

b) Déduire que $\,f(0)\,$ est une valeur minimale de la fonction $\,f$ sur $\,D_{\hskip-.7pt f}\,$

3) Soient g et h les fonctions définies par : $g(x) = x^2 - 2x$ et $h(x) = \sqrt{x+1}$

a) Dresser le tableau de variations de la fonction $\,h\,$

b) Construire la courbe $\left(C_{_h}
ight)$ dans un repère orthonormé $\left(O;ec{i}\,,ec{j}\,
ight)$

c) Déterminer graphiquement hig([-1,0] ig) et $hig([0,+\infty[ig)$

d) Dresser le tableau de variations de la fonction g

e) Vérifier que : $(\forall x \in D_f)$; $f(x) = g \circ h(x)$

f) Déduire la monotonie de la fonction f sur chacun des intervalles $\left[-1,0\right]$ et $\left[0,+\infty\right[$