

- Ensemble de définition et courbe représentative d'une fonction

1 - Ensemble de définition

<u>Définition</u>

Soit f une fonction numérique à variable réelle. Les éléments de $\mathbb R$ qui ont une image par fforment un ensemble appelé **ensemble de définition de** f et noté D_f . On a :

$$D_f = \left\{ x \in \mathbb{R} / f(x) \in \mathbb{R} \right\}$$

Remarque

En pratique, on utilise l'équivalence : $x \in D_f \Leftrightarrow \{x \in \mathbb{R} \mid f(x) \in \mathbb{R}\}$

Exemples

1)
$$f(x) = \frac{2x+1}{x-3}$$

1)
$$f(x) = \frac{1}{x-3}$$

 $x \in D_f \Leftrightarrow x-3 \neq 0 \Leftrightarrow x \neq 3 \Leftrightarrow x \in \mathbb{R} \setminus \{3\}$. Donc $D_f = \mathbb{R} \setminus \{3\}$
2) $f(x) = \sqrt{2x-5}$

2)
$$f(x) = \sqrt{2x-5}$$

2)
$$f(x) = \sqrt{2x - 5}$$

$$x \in D_f \Leftrightarrow 2x - 5 \ge 0 \Leftrightarrow 2x \ge 5 \Leftrightarrow x \ge \frac{5}{2} \Leftrightarrow x \in \left[\frac{5}{2}, +\infty\right[\text{. Donc } D_f = \left[\frac{5}{2}, +\infty\right[$$

Proposition

- **...** Les fonctions polynômes, les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ et la fonction $x \mapsto |x|$ sont définies sur $\mathbb R$
- Les fonctions rationnelles $x \mapsto \frac{P(x)}{O(x)}$ sont définies sur \mathbb{R} privé de leurs valeurs interdites (là où le dénominateur Q(x) s'annule)
- **\Lapprox** La fonction $x \mapsto \sqrt{u(x)}$ est définie $\{x \in D_u \mid u(x) \ge 0\}$

2 - Représentation graphique d'une fonction

<u>Définition</u>

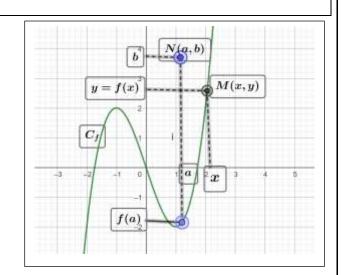
Soit f une fonction numérique à variable réelle. La représentation graphique ou la courbe **représentative de** dans un repère $(O; \vec{i}, \vec{j})$ est l'ensemble des points M(x, f(x)) tels que $x \in D_f$.

$$C_f = \left\{ M\left(x, f(x)\right) / x \in D_f \right\}$$

<u>Remarque</u>

1) On a:
$$M(x, y) \in C_f \Leftrightarrow \begin{cases} x \in D_f \\ y = f(x) \end{cases}$$

2)
$$N(x, y) \notin C_f \Leftrightarrow (\forall x \in D_f), y \neq f(x)$$



<u>II – Parité et périodicité d'une fonction</u>

1 - Parité d'une fonction

a - Fonction paire

Définition

Soit f une fonction dont l'ensemble de définition est D_f . On dit que f est **une fonction paire** si et

seulement si :
$$\begin{cases} \left(\forall x \in D_f \right), -x \in D_f \\ \left(\forall x \in D_f \right), f(-x) = f(x) \end{cases}$$

Exemple

$$f(x) = 3x^2$$

On a :
$$D_f = \mathbb{R}$$
, donc $(\forall x \in \mathbb{R})$, $-x \in \mathbb{R}$ et $(\forall x \in \mathbb{R})$, $f(-x) = 3(-x)^2 = 3x^2 = f(x)$. Alors f est paire

Sa courbe représentative dans un repère orthogonal est la parabole qui admet l'axe des ordonnées comme axe de symétrie

Proposition

Dans le plan muni d'un repère orthogonal, la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées

b - Fonction impaire

Définition

Soit f une fonction dont l'ensemble de définition est D_f . On dit que f est ${\bf une}$ fonction impaire si et

seulement si :
$$\begin{cases} \left(\forall x \in D_f \right), -x \in D_f \\ \left(\forall x \in D_f \right), \ f(-x) = -f(x) \end{cases}$$

<u>Exemple</u>

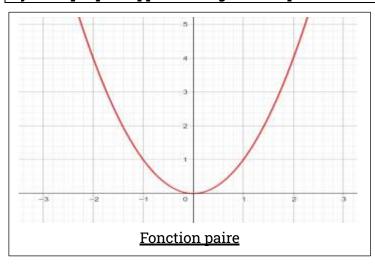
$$f(x) = 2x^3$$

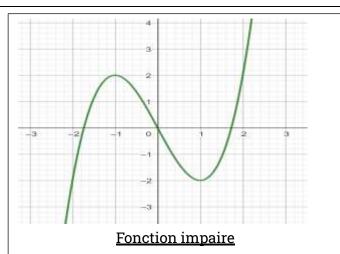
On a : $D_f = \mathbb{R}$, donc $(\forall x \in \mathbb{R})$, $-x \in \mathbb{R}$ et $(\forall x \in \mathbb{R})$, $f(-x) = 2(-x)^3 = -2x^3 = -f(x)$. Alors f est impaire.

Sa courbe représentative dans un repère orthogonal est la courbe qui admet l'origine du repère comme centre de symétrie

Proposition

Dans le plan muni d'un repère orthogonal, la courbe représentative **d'une fonction impaire** est **symétrique par rapport à l'origine du repère**





2 – Périodicité d'une fonction

Définition

Soit f une fonction dont l'ensemble de définition est D_f . On dit que f est ${\bf une}$ fonction périodique $\,$ si

et seulement s'il existe un réel T non nul tel que :
$$\begin{cases} \left(\forall x \in D_f \right), \ x + \mathbf{T} \in D_f \ \text{et} \ x - \mathbf{T} \in D_f \\ \left(\forall x \in D_f \right), \ f(x + \mathbf{T}) = f(x) \end{cases}$$

Le plus petit réel T positif non nul qui vérifie la relation précédente est appelé la période de la fonction f

Exemples

- La fonction f définie sur \mathbb{R} par : $f(x) = 5x E\left(5x + \frac{2}{3}\right)$ est périodique de période $T = \frac{1}{5}$
- ◆ La fonction g définie sur \mathbb{R} par : $g(x) = \frac{\cos(3x)}{\sin(3x) + 2}$ est périodique de période $T = \frac{2\pi}{3}$

Propriétés

Soit f une fonction périodique de période T dont l'ensemble de définition est D_f et C_f sa courbe représentative dans un repère $\left(O; \vec{i}, \vec{j}\right)$.

- Pour tout $k \in \mathbb{Z}^*$, le nombre $k \operatorname{T}$ est aussi une période de la fonction f
- ❖ On note C_k la courbe représentative de la restriction de f à l'ensemble $D_k = \begin{bmatrix} a_0 + kT, a_0 + (k+1)T \end{bmatrix} \cap D_f$. Alors C_k est l'image de C_0 par la translation de vecteur $\vec{u}_k \begin{pmatrix} kT \\ 0 \end{pmatrix}$
- On a : $C_f = \bigcup_{k \in \mathbb{Z}} C_k$
- Pour étudier une fonction périodique de période T il suffit de l'étudier sur un intervalle de longueur T, en général on choisit $\left[0,T\right]ou\left[-\frac{T}{2},\frac{T}{2}\right]$

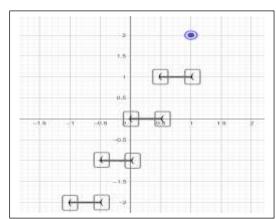
Exemple

$$f(x) = E(2x)$$

On a $D_f=\mathbb{R}$ et f est périodique de période $T=\frac{1}{2}$. L'intervalle d'étude de la fonction f est

$$D_E = \left[0, \frac{1}{2}\right[$$
. On veut construire la courbe de f sur l'intervalle $\left[-1, 1\right]$

On a:
$$\begin{cases} f(x) = -2; -1 \le x < -\frac{1}{2} \\ f(x) = -1; -\frac{1}{2} \le x < 0 \end{cases}$$
$$f(x) = 0 ; 0 \le x < \frac{1}{2}$$
$$f(x) = 1 ; \frac{1}{2} \le x < 1$$
$$f(1) = 2$$



<u>III – Fonction majorée, minorée et bornée</u>

<u>Définition</u>

Soit $\,f\,$ une fonction dont l'ensemble de définition est $\,D_f\,$ et I une partie de $\,D_f\,$.

- ♣ On dit que f est majorée sur I si et seulement si $(\exists M \in \mathbb{R})(\forall x \in I)$: $f(x) \leq M$
- ♣ On dit que f est minorée sur I si et seulement si $(\exists m \in \mathbb{R})(\forall x \in I)$: $f(x) \ge m$
- lacktriangle On dit que f set bornée sur I si et seulement si elle est majorée et minorée sur I

Remarques

- ▲ Si f est majorée par M sur I, alors elle est majorée par tout nombre M' tel que $M' \ge M$
- ▲ Si f est minorée par m sur I, alors elle est minorée par tout nombre m' tel que $m' \le m$

$$f$$
 est bornée \Leftrightarrow $(\exists \alpha \in \mathbb{R}^+)(\forall x \in D_f): |f(x)| \le \alpha$

Exemples

- 1) soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$
- 2) soit g la fonction définie sur \mathbb{R} par $g(x) = 3\sin(2x) - 2\cos x + 1$. Montrer que g est bornée sur $\mathbb R$

IV - Comparaison de deux fonctions

1 - signe d'une fonction

Définition

Soit $\,f\,$ une fonction dont l'ensemble de définition est $\,D_f\,$ et I une partie de $\,D_f\,$.

- On dit que f est positive sur I si et seulement si $(\forall x \in I), f(x) \ge 0$
- On dit que f est négative sur I si et seulement si $(\forall x \in I), f(x) \le 0$

Remarques

- Toute fonction positive sur D_f est dite positive et elle est minorée par 0
- Toute fonction négative sur D_f est dite négative et elle est majorée par ${\tt 0}$

<u>2 – Comparaison de deux fonctions</u>

Soient f et g deux fonctions dont les domaines de définition sont respectivement D_f et D_g et I une partie de $D_f \cap D_g$.

On dit que f est plus grande que g sur I si et seulement si $(\forall x \in I)$, $f(x) \ge g(x)$. On écrit $f \ge g \text{ sur I}$

<u>Interprétation géométrique</u>

- $f \ge g$ sur $I \Leftrightarrow C_f$ est au dessus de C_g
- $f \le g$ sur I \Leftrightarrow C_f est en dessous de C_g

V - Variations et extremums d'une fonction

1- Définitions

Définition

Soit f une fonction dont l'ensemble de définition est D_f et I un intervalle de D_f .

- On dit que f est **croissante sur I** si et seulement si $(\forall (a,b) \in I^2)$, $a \le b \Rightarrow f(a) \le f(b)$
- On dit que f est **strictement croissante sur I** si et seulement si $(\forall (a,b) \in I^2), a < b \Rightarrow f(a) < f(b)$
- On dit que f est **décroissante sur I** si et seulement si $(\forall (a,b) \in I^2)$, $a \le b \Rightarrow f(a) \ge f(b)$
- On dit que f est **strictement décroissante sur I** si et seulement si $(\forall (a,b) \in I^2), a < b \Rightarrow f(a) > f(b)$
- On dit que f est **monotone sur l'intervalle I** si elle est croissante ou décroissante sur I
- On dit que f est **strictement monotone sur l'intervalle I** si elle est strictement croissante ou strictement décroissante sur I
- On dit que f est **constante sur I** si et seulement si $(\forall (a,b) \in I^2)$, $a \neq b \Rightarrow f(a) \neq f(b)$

2 - Taux de variation

Définition

Soit f une fonction dont l'ensemble de définition est D_f et I un intervalle de D_f et soit a et b de I

tels que $a \neq b$; Le nombre $T_{(a,b)} = \frac{f(a) - f(b)}{a - b}$ s'appelle le taux d'accroissement de la fonction entre a et b

<u>Théorème</u>

Soit $\,f\,$ une fonction dont l'ensemble de définition est $\,D_f\,$ et I un intervalle de $\,D_f\,$. Alors :

- **❖** La fonction f est **croissante sur l'intervalle I** si et seulement si $(\forall (a,b) \in I^2), a \neq b \Rightarrow T(a,b) \geq 0$
- **❖** La fonction f est **strictement croissante sur l'intervalle I** si et seulement si $(\forall (a,b) \in I^2)$, $a \neq b \Rightarrow T(a,b) > 0$
- **❖** La fonction f est **décroissante sur l'intervalle I** si et seulement si $(\forall (a,b) \in I^2), a \neq b \Rightarrow T(a,b) \leq 0$
- **❖** La fonction f est **strictement décroissante sur l'intervalle I** si et seulement si $(\forall (a,b) \in I^2)$, $a \neq b \Rightarrow T(a,b) < 0$

Exemples

1) Soit f la fonction définie sur $[0,+\infty[$ par : $f(x)=\sqrt{x+1}+\sqrt{x}$. Etudier la monotonie de f sur $[0,+\infty[$

Soit $(a,b) \in [0,+\infty[\times[0,+\infty[$ tels que $a \neq b$, on a :

$$\mathbf{T}_{(a,b)} = \frac{f(a) - f(b)}{a - b} = \frac{\sqrt{a + 1} + \sqrt{a} - \sqrt{b + 1} - \sqrt{b}}{a - b} = \frac{\sqrt{a + 1} - \sqrt{b + 1}}{a - b} + \frac{\sqrt{a} - \sqrt{b}}{a - b} = \frac{1}{\sqrt{a + 1} + \sqrt{b + 1}} + \frac{1}{\sqrt{a} + \sqrt{b}}$$

Donc $T_{(a,b)} > 0$ car $\sqrt{a+1} + \sqrt{b+1} > 0$ et $\sqrt{a} + \sqrt{b} > 0$

Alors la fonction f est strictement croissante sur $[0,+\infty]$

2) Soit g la fonction définie sur \mathbb{R} par : $g(x) = \frac{2x-1}{x^2+2}$. Etudier la monotonie de la fonction g sur \mathbb{R} .

<u>3 – Monotonie et parité d'une fonction numérique</u>

Proposition

- \diamond Soit f une fonction paire dont l'ensemble de définition est D_f et I un intervalle de D_f et I' son symétrique par rapport à 0.
 - Si f est croissante sur I, alors elle est décroissante sur I'
 - Si f est décroissante sur I, alors elle est croissante sur I'
- \diamond Soit f une fonction impaire dont l'ensemble de définition est D_f et I un intervalle de D_f et I' son symétrique par rapport à 0.
 - Si f est croissante sur I, alors elle est croissante sur I'
 - ullet Si f est décroissante sur I, alors elle est décroissante sur I'

<u>4 – Extremums</u>

a - Extremums absolus

<u>Définition</u>

Soit $\,f\,$ une fonction dont l'ensemble de définition est $\,D_f$ et $\,a\in D_f$.

- On dit que la fonction f admet un maximum absolu en a si $(\forall x \in D_f)$, $f(x) \le f(a)$ et on écrit max f(x) = f(a)
- On dit que la fonction f admet un minimum absolu en a si $(\forall x \in D_f)$, $f(x) \ge f(a)$ et on écrit min f(x) = f(a)

Proposition

Soit f une fonction dont l'ensemble de définition est D_f

- Le nombre réel **M** est un maximum absolu de la fonction $f\Leftrightarrow \begin{cases} \left(\forall x\in D_f\right),\ f(x)\leq M\\ \left(\exists a\in D_f\right):f(a)=M \end{cases}$ Le nombre **m** est un minimum absolu de la fonction $f\Leftrightarrow \begin{cases} \left(\forall x\in D_f\right),\ f(x)\geq m\\ \left(\exists a\in D_f\right):f(a)=m \end{cases}$

<u>Remarque</u>

- ullet Si le nombre M est un maximum absolu de la fonction f , alors M est un majorant de f sur D_f ; mais la réciproque est fausse
- Si le nombre m est un minimum absolu de la fonction f , alors m est un minorant de f sur D_f ; mais la réciproque est fausse

b – Extremums relatifs

Définition

Soit f une fonction dont l'ensemble de définition est D_f et $a \in I$

- On dit que la fonction f admet **un maximum relatif en** a s'il existe un intervalle ouvert $I \subset D_f$ tel que $(\forall x \in I), f(x) \le f(a)$
- On dit que la fonction f admet **un minimum relatif en** a s'il existe un intervalle ouvert $I \subset D_f$ tel que $(\forall x \in I), f(x) \ge f(a)$

Proposition

Soit f une fonction dont l'ensemble de définition est D_f et soit a,b et c trois éléments de D_f tels que a < b < c et $\left[a,c\right] \subset D_f$

- \clubsuit Si la fonction f est décroissante sur [a,b] et croissante sur [b,c], alors la fonction f admet un minimum relatif en b

VI - Etude de guelgues fonctions usuelles

1 - Fonction $x \mapsto ax^2 + bx + c$

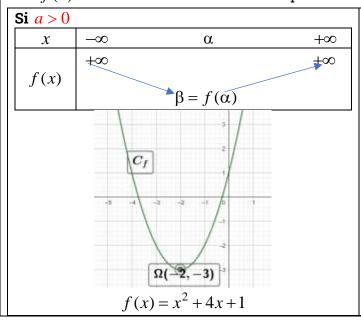
Proposition

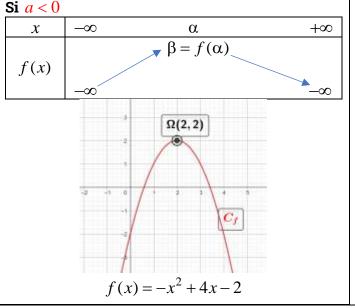
Soit $f(x) = ax^2 + bx + c$ un trinôme tel que $a \ne 0$

- La forme canonique du trinôme f(x) est $f(x) = a(x-\alpha)^2 + \beta$ où $\alpha = -\frac{b}{2a}$ et $\beta = f(-\frac{b}{2a})$
- La courbe C_f est l'image de la courbe de la fonction définie par $g(x) = a x^2$ par la translation de vecteur $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- La courbe C_f , dans un repère orthogonal, est une parabole de sommet $\Omega(\alpha,\beta)$ et d'axe de symétrie la droite d'équation $x=\alpha$

Proposition

Soit $f(x) = ax^2 + bx + c$ un trinôme tel que $a \ne 0$





Chapitre 3: Généralités sur les foncions

S. EL JAAFARI

2 - Fonction
$$x \mapsto \frac{ax+b}{cx+d}$$

Proposition

Soit f une fonction homographique définie sur $\mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$ par $f(x) = \frac{ax+b}{cx+d}$ où $(a,b,c,d) \in \mathbb{R}^4$

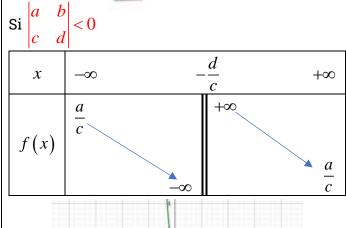
Tels que $c \neq 0$ et $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$. Alors:

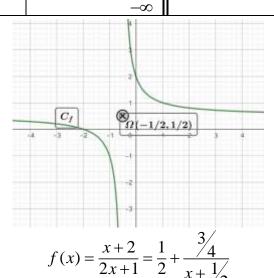
- * Ils existent trois réels α , β *et* γ tels que $f(x) = \beta + \frac{\gamma}{x \alpha}$ pour tout $\mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$
- fonction $x \mapsto \frac{\gamma}{x}$ par la translation de vecteur $\vec{u} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- ullet La courbe $\,C_f$, dans un repère orthogonal, est une hyperbole de centre $\,\Omegaig(lpha,etaig)$ et d'asymptotes les droites d'équations $x = -\frac{d}{c}$ et $y = \frac{a}{c}$

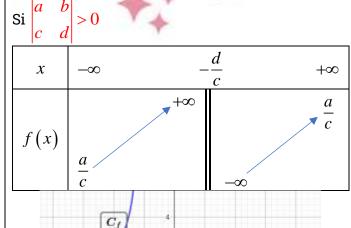
Proposition

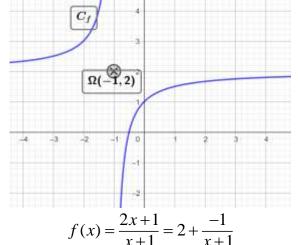
Soit f une fonction homographique définie sur $\mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$ par $f(x) = \frac{ax+b}{cx+d}$ où $(a,b,c,d) \in \mathbb{R}^4$

Tels que $c \neq 0$ et $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$.









3 - Fonction $x \mapsto \sqrt{ax+b}$

Proposition

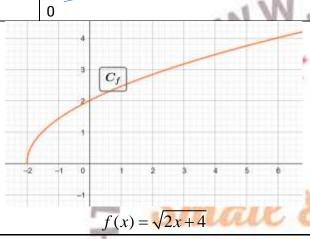
Soit f la fonction numérique à variable réelle x définie par $f(x) = \sqrt{ax+b}$ où $(a,b) \in \mathbb{R}^2$ tel que $a \neq 0$ Si a > 0

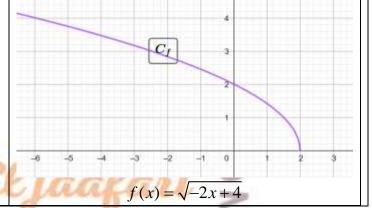
$$D_f = \left[-\frac{b}{a}, +\infty \right]$$

x	$-\frac{b}{a}$	+∞
		+∞
f(x)		

Si a < 0

$$D_f = \left[-\infty, -\frac{b}{a} \right]$$

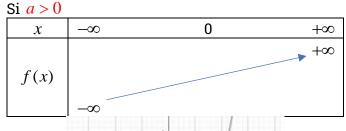




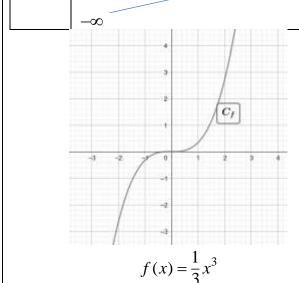
4 - Fonction $x \mapsto a x^3$

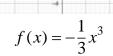
Proposition

Soit f la fonction numérique à variable réelle x définie par $f(x) = ax^3$ où $a \in \mathbb{R}^*$. On a $D_f = \mathbb{R}$









<u>VII – Composée de deux fonctions</u>

1 - Définition

Définition

Soit f et g deux fonctions numériques dont les ensembles de définition respectifs sont D_f et D_g tels que $f(D_f) \subset D_g$.

La fonction h définie sur D_f par h(x) = g(f(x)) est appelée **la fonction composée des fonctions** f et g dans cet ordre elle est notée $g \circ f$.

On a alors : $(\forall x \in D_f)$, $g \circ f(x) = g(f(x))$

<u>Remarques</u>

- En général, on a $f \circ g \neq g \circ f$
- $\bullet \quad D_{g \circ f} = \left\{ x \in \mathbb{R} \ / \ x \in D_f \text{ et } f(x) \in D_g \right\} \text{ et } D_{f \circ g} = \left\{ x \in \mathbb{R} \ / \ x \in D_g \text{ et } g(x) \in D_f \right\}$
- ullet La fonction $g\circ f$ ne peut exister que lorsque la condition $f\left(D_f\right)\subset D_g$ est vérifiée

<u>2 – Monotonie de la composée de deux fonctions</u>

Proposition

Soit f et g deux fonctions numériques dont les ensembles de définition respectifs sont D_f et D_g et soit I un intervalle tel que $I\subset D_f$ et J un intervalle tel que $J\subset D_g$ avec $f\left(I\right)\subset J$.

- lacktriangledown Si f est croissante sur I et g est croissante sur J, alors $g\circ f$ est croissante sur I
- \diamond Si f est décroissante sur I et g est décroissante sur J, alors $g \circ f$ est croissante sur I
- \diamond Si f est croissante sur I et g est décroissante sur J, alors $g \circ f$ est décroissante sur I
- ullet Si f est **décroissante** sur I et g est **croissante** sur J, alors $g \circ f$ est **décroissante** sur I

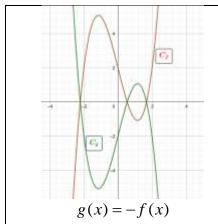
Exemple

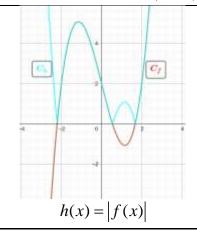
Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^4 + 4x^3 + 3x^2 + x - 1$

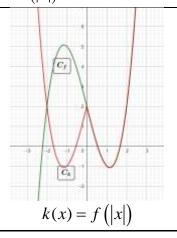
- 1) Montrer que $(\forall x \in \mathbb{R})$, $f(x) = v \circ u(x)$ où $u(x) = x^2 + x$ et $v(x) = 2x^2 + x 1$
- 2) Dresser les tableaux de variation des fonctions u et v
- 3) En déduire les variations de la fonction f

VIII - Courbes représentatives de quelques composées particulières

Soit f une fonction dont la courbe représentative, dans un repère orthogonal, est C_f . On considère les fonctions g, h et k définies par : g(x) = -f(x), h(x) = |f(x)| et k(x) = f(|x|)







Les deux courbes $\,C_f\,$ et $\,C_g\,$ sont symétriques par rapport à l'axe des abscisses

-Si $f(x) \ge 0$, alors h(x) = f(x) donc C_h et C_f sont confondues
-Si $f(x) \le 0$, alors h(x) = -f(x) Donc C_h et C_f sont symétriques par rapport à l'axe des abscisses

-Si $x \ge 0$, alors k(x) = f(x)donc C_k et C_f sont confondues -Si $x \le 0$ on a k(x) = f(-x)donc la fonction k est paire alors C_k et C_f sont symétriques par rapport à l'axe des ordonnées

