2^{ème} BIOF PC Chapitre5: Fonctions primitives S. EL JAAFARI

https://www.dimamath.com

1 - Définition

Définition

Soit f et F deux fonctions définies sur un intervalle I de $\mathbb R$

On dit que $\,F\,$ est une fonction primitive de $\,f\,$ si et seulement si :

$$\int F$$
 est dérivable sur I

$$(\forall x \in I), F'(x) = f(x)$$

2 - Propriétés

Proposition1

Toute fonction continue sur un intervalle admet au moins une fonction primitive sur cet intervalle

Proposition2

Soit F une primitive d'une fonction f sur un intervalle I . Alors :

- Les fonctions $G_k: x \mapsto F(x) + k$ sont des primitives de f sur I, pour tout réel k
- En particulier, si $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique fonction primitive H de f sur I telle que : $H(x_0) = y_0$

Proposition 3

Soit F une primitive de f sur un intervalle I.

Une fonction G est une primitive de f sur I si et seulement si :

$$(\exists k \in \mathbb{R})(\forall x \in I); G(x) = F(x) + k$$

3 – Primitives des fonctions usuelles

f(x)	F(x)	Z I
a (a = constante)	ax+c	\mathbb{R}
X	$\frac{1}{2}x^2 + c$	\mathbb{R}
<i>x</i> ²	$\frac{1}{3}x^3 + c$	\mathbb{R}
$x^n \ (n \in \mathbb{N}^*)$	$\frac{1}{n+1}x^{n+1} + c$	\mathbb{R}
$\frac{1}{x^2}$	$-\frac{1}{x}+c$	$]-\infty,0[\ ou\]0,+\infty[$
$\frac{1}{x^3}$	$-\frac{1}{2x^2} + c$	$]-\infty,0[\ ou\]0,+\infty[$
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}+c$] $-\infty$,0[ou]0,+ ∞ [
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}+c$]0,+∞[
$\cos x$	$\sin x + c$	\mathbb{R}
$\cos(ax+b)\ (a\neq 0)$	$\frac{1}{a}\sin(ax+b)+c$	\mathbb{R}
sin x	$\cos x + c$	\mathbb{R}

2^{ème} BIOF PC Chapitre5: Fonctions primitives S. EL JAAFARI

https://www.dimamath.com

$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	$\mathbb R$
$x^r \ (r \in \mathbb{Q}^* - \{-1\})$	$\frac{1}{r+1}x^{r+1}+c$	$]0,+\infty[$
$\frac{1}{1+x^2}$	$\arctan x + c$	\mathbb{R}

4 – Opérations des fonctions usuelles et primitives

Soit u et v deux fonctions dérivables sur un intervalle I et U une primitive de u sur I et V une primitive de v sur I et $\alpha \in \mathbb{R}$

Hirve de V Sur l'et $\alpha \in \mathbb{R}$		
F		
U + V + c		
$\alpha U + c$		
uv + c		
$\frac{u}{v} + c$		
$\frac{1}{r+1}u^{r+1}+c$		
$2\sqrt{u}+c$		
$-\cos(u)+c$		
$\sin(u) + c$		
arctan(u) + c		
$-\frac{\alpha}{(r-1)u^{r-1}}$		