

Exercice 1

Soit $n \in \mathbb{N}$,tel que $n \ge 2$. On considère la fonction f_n définie sur

$$\mathbb{R} \ par: f_n(x) = x - cos\left(\frac{x}{n}\right).$$

1/ a/ Montrer que f_n réalise une bijection de $\mathbb R$ vers $\mathbb R$

b/ En déduire que l'équation $f_n(x) = 0$ admet une unique solution α_n dans \mathbb{R} et que : $0 < \alpha_n < 1$

2/ a/ Montrer que : $(\forall x \in]0;1[);f_{n+1}(x) < f_n(x)$ b/ Etudier le sens de variation de la suite $(\alpha_n)_{n>2}$

3/ Prouver que la suite $(\alpha_n)_{n\geq 2}$ est convergente et calculer sa limite

Exercice 2

I - On considère la fonction f définie sur \mathbb{R} par : $f(x) = 2x - 1 + Arc \tan x$

1/ Etablir que :
$$(\forall x \in \mathbb{R})$$
; $f'(x) > 2$

2/ Montrer que f est une bijection de $\mathbb R$ vers $\mathbb R$. On note f^{-1} sa fonction réciproque

3/ Montrer que l'équation f(x) = x admet une unique solution α dans \mathbb{R} et que $0 < \alpha < 1$

4/ Montrer que : $(\forall x \in]\alpha; +\infty[); f(x) > x$

II - Soit $a \in]\alpha; +\infty[$ et soit (u_n) la suite

numérique définie par :
$$\begin{cases} u_0 = a \\ u_{n+1} = f\left(u_n\right); n \in \mathbb{N} \end{cases}$$

1/ Montrer que : $(\forall n \in \mathbb{N})$; $u_n > \alpha$

2/ Etudier la monotonie de la suite (u_n) et en déduire sa convergence

3/ a/ En utilisant le théorème des accroissements

finis, montrer que :
$$(\forall n \in \mathbb{N})$$
; $u_{n+1} - \alpha < \frac{1}{2}(u_n - \alpha)$

b/ Calculer $\lim_{n \to +\infty} u_n$

Exercice 3

Soit (u_n) la suite définie par :

$$u_0 = 0$$
 et $(\forall n \in \mathbb{N})$; $u_{n+1} = \sqrt{3u_n + 4}$

1/ a/ Montrer que : $(\forall n \in \mathbb{N})$; $0 \le u_n < 4$

b/ Etudier le sens de variation de la suite (u_n)

c/ En déduire la convergence de la suite (u_n)

2/ a/ Dresser le tableau de variation de la fonction g définie sur l'intervalle [0;4] par :

$$g(x) = \frac{3}{4 + \sqrt{3x + 4}}$$

b/ Montrer que : $(\forall n \in \mathbb{N})$; $4-u_{n+1} \le \frac{1}{2}(4-u_n)$

c/ Déduire que : $(\forall n \in \mathbb{N})$; $4 - u_n \le 4 \times \left(\frac{1}{2}\right)^n$

3/ On considère la suite $(S_n)_{n>1}$ telle que

$$(\forall n \in \mathbb{N}^*); S_n = \sum_{k=1}^n u_k$$

a/ Etudier la monotonie de la suite $(S_n)_{n\geq 1}$

b/ Montrer par l'absurde que la suite $(S_n)_{n\geq 1}$

n'est pas majorée

4/ a/ Montrer que :

$$(\forall n \in \mathbb{N}^*); S_n \ge 4n - 4\left(1 - \left(\frac{1}{2}\right)^n\right)$$

b/ En déduire $\lim_{n\to+\infty} S_n$

Exercice 4

Soit $n \in \mathbb{N}^*$. On considère la fonction h_n définie sur l'intervalle

$$\left[0; \frac{\pi}{2}\right] par : h_n(x) = x + n - n \times tan x$$

1/ a/ Etudier les variations de la fonction h_n

b/ Montrer que l'équation $h_n(x) = 0$ admet une unique solution π

$$\alpha_n$$
 dans l'intervalle $\left[0, \frac{\pi}{2}\right]$

c/ Vérifier que $\alpha_n \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[$ et que $tan(\alpha_n) = 1 + \frac{\alpha_n}{n}$

2/ a/ Montrer que:

$$\left(\forall x \in \left] \frac{\pi}{4}; \frac{\pi}{2} \right[\left(\forall n \in \mathbb{N}^* \right); h_{n+1}(x) < h_n(x) \right)$$

b/ Montrer que la suite $(\alpha_n)_{n\geq 1}$ est décroissante

c/ Prouver que la suite $\left(\alpha_n\right)_{n\geq 1}$ est convergente et calculer sa limite

Exercice 5

On considère la suite $(a_n)_{n\geq 1}$ définie par :

$$\begin{cases} a_1 = \frac{1}{2} \\ a_{n+1} = \frac{2a_n}{1+a_n^2}; n \in \mathbb{N}^* \end{cases}$$

1/ a/ Montrer que : $(\forall n \in \mathbb{N}^*)$; $0 < a_n < 1$

b/ Etudier le sens de variation de la suite $(a_n)_{n>1}$

c/ En déduire que la suite $(a_n)_{n\geq 1}$ est

convergente

2/ Soit f la fonction définie sur l'intervalle [0,1]

par:
$$f(x) = \frac{2x}{1+x^2}$$

a/ Montrer que f est continue sur $\left[0;1\right]$ et que

$$f([0;1])\subset [0;1]$$

b/ Calculer $\lim_{n \to +\infty} a_n$

3/ Soit $(b_n)_{n\geq 1}$ la suite définie par :

$$(\forall n \in \mathbb{N}^*); b_n = \frac{1}{2^n} \sum_{k=1}^n 2^k a_k$$

a/ Montrer que :

$$(\forall n \in \mathbb{N}^*); b_{n+1} - b_n = \frac{1}{2^{n+1}} \left[2^{n+1} a_{n+1} - \sum_{k=1}^n 2^k a_k \right]$$

b/ Montrer que : $(\forall n \in \mathbb{N}^*)$; $\sum_{k=1}^{n} 2^k a_k < 2^{n+1} a_{n+1}$

c/ Déduire que la suite $(b_n)_{n\geq 1}$ est croissante

d/ Montrer que la suite $(b_n)_{n\geq 1}$ est majorée par 2, et en déduire qu'elle est convergente

4/ a/ Vérifier que :
$$(\forall n \in \mathbb{N}^*)$$
; $\frac{2^{n+1}}{a_{n+1}} - \frac{2^n}{a_n} = 2^n a_n$

b/ En déduire que : $(\forall n \in \mathbb{N}^*)$; $b_n = \frac{2}{a_{n+1}} - \frac{1}{2^{n-2}}$

c/ Calculer $\lim_{n\to+\infty} b_n$

Exercice 6

Soit $(u_n)_{n\geq 1}$ $et(v_n)_{n\geq 1}$ les deux suites définies par :

$$(\forall n \in \mathbb{N}^*); v_n = \sum_{k=1}^n \frac{1}{\sqrt{k+n}} et \ u_n = \frac{1}{n} \sum_{k=1}^n cos\left(\frac{1}{\sqrt{k+n}}\right)$$

1/ a/ Montrer que

$$(\forall n \in \mathbb{N}^*)(\forall k \in 1; n); \frac{1}{\sqrt{2n}} \leq \frac{1}{\sqrt{n+k}} \leq \frac{1}{\sqrt{n+1}}$$

b/ En déduire que :

$$(\forall n \in \mathbb{N}^*); \frac{\sqrt{2n}}{2} \leq \sum_{k=1}^n \frac{1}{\sqrt{n+k}} \leq \frac{n}{\sqrt{n+1}}$$

c/Calculer $\lim_{n\to +\infty} v_n$ et $\lim_{n\to +\infty} \frac{v_n}{n}$

2/ a/ Dresser le tableau de variation sur

l'intervalle $\left[0, \frac{\pi}{2}\right]$ de la fonction f définie par :

 $f(x) = x - 1 + \cos x$ b/ Montrer que:

$$(\forall n \in \mathbb{N}^*)$$
; $1 - \frac{1}{\sqrt{k+n}} \le \cos\left(\frac{1}{\sqrt{k+n}}\right) \le 1$ et que :

$$1 - \frac{v_n}{n} \le u_n \le 1$$

c/ Calculer $\lim_{n \to +\infty} u_n$

Exercice 7

1/ On considère la fonction f définie sur

l'intervalle
$$[0; +\infty[$$
 par $: f(x) = \frac{x}{1+\sqrt{1+x^2}}$.

Etudier les variations de la fonction f et dresser son tableau de variation

2/ Soit (c_n) la suite définie par :

$$\begin{cases} c_0 = 1 \\ c_{n+1} = f(c_n); \ n \in \mathbb{N} \end{cases}$$

a/ Montrer que : $(\forall n \in \mathbb{N})$; $0 < c_n \le 1$

b/ Etudier la monotonie de la suite (c_n)

c/ En déduire la convergence de la suite (c_n)

3/ a/ Montrer que :

$$\left(\forall x \in \left]0; \frac{\pi}{4}\right]\right); \frac{\tan x}{1 + \sqrt{1 + \tan^2(x)}} = \tan\left(\frac{x}{2}\right)$$

b/ Montrer que : $(\forall n \in \mathbb{N})$; $c_n = tan\left(\frac{\pi}{2^{n+2}}\right)$

c/ Calculer $\lim_{n \to +\infty} c_n$

4/ On pose pour tout $\mathbf{n} \in \mathbb{N}$: $S_n = \sum_{k=0}^n \left(-1\right)^k c_k$,

 $T_n = S_{2n} \ et \ R_n = S_{2n+1}$

a/ Montrer que : $(\forall n \in \mathbb{N})$; $R_n < T_n$

b/ Montrer que les suites $\left(R_n\right)$ et $\left(T_n\right)$ sont adjacentes

c/ En déduire que les suites (R_n) et (T_n) sont convergentes vers la même limite L vérifiant $2-\sqrt{2} \le L \le 1$

Exercice 8

Soit $(a_n)_{n\geq 1}$ une suite telle que $: (\forall n \in \mathbb{N}^*); a_n > 0$

Montrer que : $(\forall n \in \mathbb{N}^*)$; $(\sum_{k=1}^n a_k) (\sum_{k=1}^n \frac{1}{a_k}) \ge n^2$

Exercice 9

Soit $(u_n)_{n\geq 1}$ la suite telle que :

$$\begin{cases} u_1 = 1 \\ u_{n+1} = \sqrt{1 + n + u_n} ; n \in \mathbb{N}^* \end{cases}$$

1/ a/ Montrer que : $(\forall n \in \mathbb{N}^*)$; $u_n \le \sqrt{2n+1}$

b/ Montrer que:

$$(\forall n \in \mathbb{N}^*); \sqrt{1+n+\sqrt{2n+1}} \le \sqrt{2n+3}$$

2/ a/ Montrer que : $(\forall n \ge 2)$; $\frac{u_n}{\sqrt{n}} = \sqrt{1 + \frac{u_{n-1}}{n}}$

b/ Montrer que $\lim_{n\to+\infty} \frac{u_{n-1}}{n} = 0$

c/ Calculer $\lim_{n\to+\infty} \frac{u_n}{\sqrt{n}}$

3/ a/ Montrer que :

$$(\forall n \ge 2); u_n - \sqrt{n} = \frac{\frac{u_{n-1}}{\sqrt{n-1}}}{1 + \frac{u_n}{\sqrt{n}}} \times \frac{\sqrt{n-1}}{\sqrt{n}}$$

b/ déduire $\lim_{n\to+\infty} u_n - \sqrt{n}$

Exercice 10

Soit (x_n) la suite définie par : $\begin{cases} x_0 \in]0;1[\\ x_{n+1} = 1 + \frac{x_n}{n+1} \end{cases}$

1/ Montrer que : $(\forall n \in \mathbb{N})$; $0 < x_n < 2$

2/ Montrer que $\lim_{n\to +\infty} x_n = 0$

Exercice 11

On considère la suite $(w_n)_{n>1}$ définie par :

$$\begin{cases} w_1 = 1 \\ w_n = \frac{1}{n\sqrt{n}} \left(\sum_{k=1}^n k \right); n \in \mathbb{N}^* \end{cases}$$

1/ En appliquant le TAF à la fonction f

$$: x \mapsto \frac{2}{3}x^{\frac{3}{2}}$$

sur les intervalles [k; k+1] où $k \in 1; n$.

Montrer que :

$$(\forall n \in \mathbb{N}^*); w_n - \frac{1}{n} \le \frac{2}{3} - \frac{2}{3n\sqrt{n}} \le w_n - \frac{1}{n\sqrt{n}}$$

2/ déduire que la suite $\left(w_n\right)_{n\geq 1}$ est convergente et calculer sa limite

Exercice 12

On considère la fonction f définie sur \mathbb{R}^+ par :

$$f(x) = 2Arc tan\left(\frac{2\sqrt{x}}{1+x}\right)$$
et soit (C_f) sa courbe

représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

1/ a/ Calculer les limites :

$$\lim_{x \to +\infty} f(x) et \lim_{t \to 0} \frac{Arc \tan t}{t}$$

b/ Montrer que : $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$ puis donner

une interprétation graphique au résultat

Série 4 : Les suites numériques

https://www.dimamath.com

2/ Etudier les variations de la fonction f et dresser son tableau de variation

3/ Construire la courbe (C_f)

(on prendra pour unité graphique 2 cm)

4/ On note par g la restriction de f sur l'intervalle $I = [1, +\infty]$

a/ Montrer que q est une bijection de l'intervalle I vers un intervalle J que l'on déterminera

b/ Soit g^{-1} sa fonction réciproque de g. Donner l'expression de $g^1(x)$ pour tout $x \in J$ 5/ Montrer que l'équation f(x) = x admet une unique solution α dans l'intervalle [1,2]

6/ On considère la suite (u_n) définie par :

 $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$

a/ Etablir que : $f(2) > \frac{\pi}{3}$

b/ Montrer que : $(\forall n \in \mathbb{N})$; $1 \le u_n \le 2$

c/ En utilisant le TAF, montre que :

 $(\forall n \in \mathbb{N}); |u_{+1} - \alpha| \leq \frac{1}{4} |u_n - \alpha|$

d/ En déduire que la suite (u_n) est convergente et calculer sa limite

Exercice 13

On considère la fonction g définie sur $\mathbb R$ par : $g(x) = x + Arc \tan x$

1/ a/ Etudier les variations de la fonction g et dresser son tableau de variation

b/ Montrer que la fonction g est une bijection de \mathbb{R} vers un intervalle J à déterminer

2/ Soit $n \in \mathbb{N}^*$. Montrer que l'équation $g(x) = \frac{1}{x}$

admet une unique solution x_n dans \mathbb{R} et que $0 < x_n < 1$

3/ On considère la suite $(x_n)_{n\geq 1}$ ainsi définie.

a/ Montrer que la suite $(x_n)_{n>1}$ est strictement décroissante

b/ Calculer la limite de la suite $(x_n)_{n>1}$

Exercice 14

1/ On considère la suite (u_n) définie par :

 $(\forall n \in \mathbb{N})$; $u_n = \left(1 - \frac{\pi}{9}\right)^n$ et on pose :

 $(\forall n \in \mathbb{N}^*)$; $S_n = \sum_{j=0}^{n-1} u_j$.

Déterminer S_n en fonction de n, et calculer $\lim_{n\to+\infty} S_n$

2/ On considère la suite (w_n) définie par :

 $\left[w_{n+1} = Arc tan \left[u_n + tan \left(a_n\right)\right]; n \in \mathbb{N}\right]$

a/ Montrer que : $(\forall n \in \mathbb{N})$; $0 \le w_n < \frac{\pi}{2}$

b/ Etudier le sens de variation de la suite (w_n) et en déduire sa convergence

c/ Montrer que : $\lim_{n \to +\infty} w_n = \frac{\pi}{18}$

Exercice 15

A- Soit $n \in \mathbb{N}^*$. On considère la fonction f_n définie sur \mathbb{R} par : $f_n(x) = x^{2n+1} + 3x - 2$, et soit (C_n) la courbe représentative de f_n dans un repère orthonormé (O; i, j)

1/ a/ Dresser le tableau de variation de f_n b/ Montrer que le point I(0,-2) est un centre de symétrie de la courbe (C_n)

c/ Déterminer le point d'inflexion de la courbe

2/ a/ Etudier la position relative de (C_n) et (C_{n+1})

b/ En déduire que toutes les courbes (C_n) passent par trois points fixes I, A et B que l'on déterminera

3/ a/ Montrer que f_n réalise une bijection de $\mathbb R$ vers $\mathbb R$. Soit f_n^{-1} sa fonction réciproque

b/ Calculer $(f_n^{-1})'(-6)$, $(f_n^{-1})'(-2)$ et $(f_n^{-1})'(2)$

4/ a/ Montrer que l'équation $f_n(x) = 0$ admet une solution unique x_n dans $\mathbb R$ et que

$$0 < x_n < \frac{2}{3}$$

b/ Montrer que :
$$(\forall n \in \mathbb{N}^*)$$
; $0 < x_n^{2n+1} < \left(\frac{2}{3}\right)^{2n+1}$

c/ Montrer que :
$$(\forall n \in \mathbb{N}^*)$$
; $x_n = \frac{2 - x_n^{2n+1}}{3}$

d/ Calculer
$$\lim_{n \to +\infty} x_n^{2n+1}$$
 puis en déduire $\lim_{n \to +\infty} x_n$

B- On suppose dans cette partie que n = 1, et on note $f = f_1$ et $\alpha = x_1$

1/ Soit ϕ la fonction définie sur l'intervalle

$$\left[0,\frac{2}{3}\right] \operatorname{par}: \varphi(x) = x - \frac{f(x)}{f'(x)}$$

a/ Montrer que :
$$\varphi\left(\left[0,\frac{2}{3}\right]\right) \subset \left[0,\frac{2}{3}\right]$$

b/ Montrer que :

$$\left(x \in \left[0, \frac{2}{3}\right]\right); \varphi(x) - \alpha = \left(x - \alpha\right)^2 \times \frac{2x + \alpha}{3\left(x^2 + 1\right)}$$

c/ Montrer que :

$$\left(\forall x \in \left[0; \frac{1}{3}\right]\right); \frac{\left(2x + \alpha\right)\left|x - \alpha\right|}{3\left(x^2 + 1\right)} \le \frac{2}{3}$$

d/ En déduire que :

$$\left(\forall x \in \left[0; \frac{2}{3}\right]; \left|\mathbf{\varphi}(x) - \mathbf{\alpha}\right| \leq \frac{2}{3} \left|x - \mathbf{\alpha}\right|$$

2/ Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_{+1} = \mathbf{\varphi}(u_n), n \in \mathbb{N} \end{cases}$$

a/ Montrer que :
$$(\forall n \in \mathbb{N})$$
; $0 \le u_n \le \frac{2}{3}$

b/ Montrer que :
$$(\forall n \in \mathbb{N})$$
; $|u_{n+1} - \alpha| \le \frac{2}{3} |u_n - \alpha|$

c/ En déduire que la suite (u_n) est convergente

et montrer que : $\alpha = \sqrt[3]{\sqrt{2} + 1} - \sqrt[3]{\sqrt{2} - 1}$

Exercice 16

A- 1/ Résoudre, dans \mathbb{R} , l'équation : $x^2 = x + 1$. On notera par φ sa solution positive que l'on nommera « le nombre d'or »

2/ Montrer que :
$$\varphi = 1 + \frac{1}{\varphi}$$

Les nombres de Fibonacci sont les termes de la suite (F_n) définie par :

$$\begin{cases} F_0 = F_1 = 1 \\ F_{n+2} = F_{n+1} + F_n; n \in \mathbb{N} \end{cases}$$
 On considère la suite

$$(u_n)$$
 définie par : $(\forall n \in \mathbb{N})$; $u_n = \frac{F_{n+1}}{F_n}$

1/ Démontrer que :
$$(\forall n \in \mathbb{N})$$
; $F_n \ge 1$

2/ Montrer que :
$$(\forall n \in \mathbb{N})$$
; $u_{n+1} = 1 + \frac{1}{u_n}$

3/ Montrer que si la suite (u_n) est convergente alors $\lim_{n\to+\infty}u_n=\mathbf{\Phi}$

4/ a/ Démontrer que :
$$(\forall n \in \mathbb{N})$$
; $u_{n+1} - \varphi = \frac{\varphi - u_n}{\varphi \times u_n}$

b/ En déduire que :
$$(\forall n \in \mathbb{N})$$
; $|u_{n+1} - \varphi| \le \frac{1}{\varphi} |u_n - \varphi|$

c/ Démontrer que :
$$(\forall n \in \mathbb{N})$$
; $|u_n - \varphi| \le \left(\frac{1}{\varphi}\right)^n |1 - \varphi|$

d/ Calculer
$$\lim_{n\to +\infty} u_n$$

C- 1/ Montrer que :
$$(\forall n \in \mathbb{N})$$
; $F_n = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1} \times \sqrt{5}}$

2/ Calculer
$$\lim_{n\to+\infty} F_n$$