

Exercice 1

I- On considère la fonction g définie sur \mathbb{R}^{+*} par : $g(x) = 2Arc \tan\left(\frac{1}{x}\right) - \frac{x}{1+x^2}$

1/ Etudier les variations de g

2/ En déduire que : $(\forall x \in \mathbb{R}^{+*})$; g(x) > 0

II- On considère la fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = x^2 Arc \tan\left(\frac{1}{x}\right); x \neq 0 \\ f(0) = 0 \end{cases}$

et soit $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}\,, \vec{j}\right)$.

1/ a/ Etudier la parité de f et calculer $\lim_{x \to +\infty} f(x)$.

b/ Etudier la continuité de f en 0.

c/ Etudier la dérivabilité de f en 0

2/ a/ Montrer que : $(\forall x \in \mathbb{R}^{+*}); f'(x) = x g(x)$

b/ En déduire les variations de f sur \mathbb{R}^+

c/ Dresser le tableau de variation de f sur $\mathbb R$.

3/ a/ En utilisant les inégalités des accroissements finis, montrer que ; $(\forall t \in \mathbb{R}^{+*}); 0 < t - Arc \tan t < t^3$

b/ Montrer que la droite (Δ): y = x est une asymptote à la courbe (C_f) en $+\infty$

c/ Etudier la position relative de la courbe $\left(C_f
ight)$ par rapport à la droite $\left(\Delta
ight)$ sur \mathbb{R}^+

4/ Construire la courbe (C_f) .

Exercice 2

On considère la fonction f définie par : $f(x) = \frac{2x-6}{\sqrt{x^2-6x+10}}$

et soit $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O;\vec{i}\,,\vec{j}\,\right)$.

1/ a/ Montrer que $D_f=\mathbb{R}$

b/ Calculer les limites de $\,f\,$ aux bornes de $\,D_f\,$

c/ En déduire les branches infinies de la courbe $\left(C_f\right)$

2/ a/ Montrer que : $(\forall x \in \mathbb{R})$; $(6-x)^2 - 6(6-x) + 10 = x^2 - 6x + 10$

b/ En déduire que le point $I\left(2;0
ight)$ est le centre de symétrie de $\left(C_{f}
ight)$

3/ a/ Montrer que $\,f\,$ est dérivable sur $\,\mathbb{R}\,$

b/ Montrer que : $(\forall x \in \mathbb{R})$; $f'(x) = \frac{2}{(x^2 - 6x + 10)\sqrt{x^2 - 6x + 10}}$

c/ Etudier les variations de f et dresser son tableau de variation

4/ a/ Montrer que : $(\forall x \in \mathbb{R})$; $f''(x) = \frac{-6(x-3)}{\sqrt{x^2 - 6x + 10}}$

b/ Etudier la concavité de la courbe $\left(C_f
ight)$

5/ a/ Déterminer l'équation réduite de la tangente (T) à la courbe (C_f) au point I

- b/ Construire la courbe (C_f)
- 6/ a/ Montrer que la fonction $\,f\,$ admet une bijection réciproque $\,f^{-1}\,$ définie sur un intervalle J à déterminer.
 - b/ Calculer $f^{-1}(0)$ et $(f^{-1})'(0)$
 - c/ Exprimer $f^{-1}(x)$ pour tout $x \in J$
 - d/ Construire dans le même repère la courbe $(C_{f^{-1}})$

Exercice 3

I- On considère la fonction g définie sur \mathbb{R}^+ par : $g(x) = Arc \tan x - x + \frac{x^2}{3}$

- 1/ Montrer que : $(\forall t \in \mathbb{R}^+); |g'(t)| \le t^4$
- 2/ En déduire que : $(\forall x \in \mathbb{R}^+); |g(x)| \le x^5$
- 3/ Calculer: $\lim_{x\to 0^+} \frac{Arc \tan x x}{x^2}$ et $\lim_{x\to 0^+} \frac{Arc \tan x x}{x^3}$

3/ Calculer:
$$\lim_{x \to 0^+} \frac{Arc \tan x - x}{x^2}$$
 et $\lim_{x \to 0^+} \frac{Arc \tan x - x}{x^3}$

II- Soit f la fonction définie sur \mathbb{R}^+ par:
$$\begin{cases} f(x) = \frac{1}{\sqrt{x}} - \frac{1}{Arc \tan(\sqrt{x})}; x > 0 \\ f(0) = 0 \end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

- 1/ Montrer que la fonction f est continue à droite en 0
- 2/ Etudier la dérivabilité de f à droite en 0, puis interpréter le résultat graphiquement
- 3/ Déterminer la branche in finie de la courbe (C_f) au voisinage de $+\infty$

4/ Montrer que :
$$(\forall x \in \mathbb{R}^{+*})$$
; $f'(x) = \frac{1}{2x\sqrt{x}\left(Arc\tan\left(\sqrt{x}\right)\right)^2} \times \left[\frac{x}{1+x} - \left(Arc\tan\left(\sqrt{x}\right)\right)^2\right]$

a/ En appliquant le TAF, montrer que : $(\forall t > 0)$; $Arc \tan t > \frac{t}{1 + t^2}$

b/ En utilisant le TAF, montrer que : $(\forall t > 0)$; $(Arc \tan t)^2 > \frac{t^2}{1+t^2}$

5/ Etudier les variations de f et dresser son tableau de variation.

6/ Construire la courbe (C_f)

Exercice 4:

On considère la fonction f définie par : $f(x) = \sqrt{x + \sqrt{1 + x^2}}$ et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

1/ a/ Montrer que : $(\forall x \in \mathbb{R})$; $x + \sqrt{1 + x^2} > 0$ et en déduire D_f

b/ Calculer les limites de f en $+\infty$ et $-\infty$ puis étudier les branches infinies de la courbe $\left(C_f\right)$

2/ a/ Montrer que $\,f\,$ est dérivable sur $\,D_f\,$

b/ Montrer que :
$$(\forall x \in D_f)$$
; $f'(x) = \frac{f(x)}{2\sqrt{1+x^2}}$

c/ Dresser le tableau de variation de f

3/ Montrer que : $(\forall x \in \mathbb{R})$; $f''(x) = \frac{f'(x)}{2(1+x^2)} (\sqrt{1+x^2}-2x)$ et en déduire la concavité de (C_f) et

déterminer les coordonnées de son point d'inflexion.

4/ a/ Démontrer que : $(\exists!\alpha \in]2;3[);f(\alpha)=\alpha$

b/ Construire la courbe (C_f) (On prendra : $\frac{\sqrt{3}}{3} \simeq 0.6$; $\sqrt[4]{3} \simeq 1.3$ et $\alpha \simeq 2.1$)

5/ Soit φ la fonction définie sur l'intervalle $\left[0; \frac{\sqrt{3}}{3}\right]$ par : $\varphi(x) = \frac{f(x)+1}{2} - f\left(\frac{x}{2}\right) - \frac{mx^2}{2}$

où m est le réel qui vérifie $\varphi\left(\frac{\sqrt{3}}{3}\right) = 0$

a/ Montrer que :
$$\left(\exists \beta \in \left]0; \frac{\sqrt{3}}{3}\right[\right); f'(\beta) - f'\left(\frac{\beta}{2}\right) = \frac{m\beta}{2}$$

b/ Montrer que :
$$\left(\exists \gamma \in \left] \frac{\beta}{2}; \beta \right[\right); m = f''(\gamma)$$

c/ En déduire que :
$$\left| f\left(\frac{\sqrt{3}}{6}\right) - \frac{1}{2} - \frac{\sqrt[4]{3}}{2} \right| \le \frac{\sqrt[4]{3}}{96}$$

Exercice 5

On considère la fonction f définie sur l'intervalle $]-\infty;1]$ par : $f(x) = x - Arc \tan \sqrt{1-x}$

On note par $\left(C_f
ight)$ sa courbe dans un repère orthonormé $\left(O; \vec{i}\,, \vec{j}\,
ight)$.

 $1/ \text{ a/Calculer } \lim_{x \to -\infty} f(x)$

b/ Montrer que la courbe $\left(C_f\right)$ admet une asymptote oblique (Δ) au voisinage de $-\infty$ dont on donnera une équation cartésienne

c/ Etudier la position relative de $\left(C_f\right)$ par rapport à la droite $\left(\Delta\right)$

2/a/Etudier la dérivabilité de f à gauche de 1 et donner une interprétation graphique de ce résultat

b/ Montrer que :
$$\left(\forall x \in]-\infty; 1[; f'(x) = 1 + \frac{1}{2(2-x)\sqrt{1-x}} \right)$$

c/ Dresser le tableau de variation de la fonction f

3/ Montrer que la courbe (C_f) coupe l'axe des abscisses en un seul point d'abscisse α tel que $0 < \alpha < 1$

4/ a/ Donner l'équation de la tangente (T) à la courbe $\left(C_f\right)$ au point d'abscisse 0

b/ Construire $\left(C_f
ight)$; (Δ) et (T) dans le repère $\left(O;ec{i}\,,ec{j}
ight)$

5/ a/ Montrer que la fonction f est une bijection de l'intervalle $]-\infty; 1]$ dans un intervalle J à déterminer. On notera f^{-1} sa fonction réciproque

b/Calculer
$$\left(f^{-1}\right)'\left(-\frac{\pi}{4}\right)$$

c/ Construire la courbe $\left(C_{f^{-1}}
ight)$ de f^{-1} dans le même repère.

On considère la fonction
$$f$$
 définie par :
$$\begin{cases} f(x) = \frac{x - Arc \tan x}{|Arc \tan x|}; x \neq 0 \\ f(0) = 0 \end{cases}$$
, et soit C_f sa courbe

représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

1/ Etudier la parité de $\,f\,$ puis déterminer le domaine d'étude $\,D_{\!E}\,$ de $\,f\,$

2/ Etudier la continuité de f en 0

3/ a/ Montrer que :
$$(\forall x \in \mathbb{R}^+)$$
; $Arc \tan x + Arc \tan \left(\frac{1}{x}\right) = \frac{\pi}{2}$

b/ Calculer
$$\lim_{x \to +\infty} f(x) et \lim_{x \to +\infty} \frac{f(x)}{x}$$

b/ Calculer
$$\lim_{x \to +\infty} f(x) et \lim_{x \to +\infty} \frac{f(x)}{x}$$

c/ Montrer que : $(\forall x \in \mathbb{R}^{+*})$; $f(x) - \frac{2}{\pi}x = \frac{1}{\pi \times Arc \tan x} \times \frac{2Arc \tan \left(\frac{1}{x}\right)}{\frac{1}{x}} - 1$

d/ En déduire la branche infinie de (C_x) au voisinage de $+\infty$

d/En déduire la branche infinie de (C_f) au voisinage de $+\infty$

4/ a/ En appliquant l'inégalité des accroissements finis, montrer que :

$$(\forall x \in \mathbb{R}^{+*}); 0 < \frac{x - Arc \tan x}{x} < \frac{x^2}{1 + x^2}$$

b/ Montrer que :
$$(\forall x \in \mathbb{R}^{+*}); \frac{x}{1+x^2} < Arc \tan x$$

c/ En déduire la dérivabilité de f à droite en 0 et interpréter le résultat géométriquement

5/ a/ Montrer que :
$$(\forall x \in \mathbb{R}^{+*})$$
; $f'(x) = \frac{(1+x^2)Arc\tan x - x}{(1+x^2)(Arc\tan x)^2}$

b/ Etudier les variations de f sur \mathbb{R}^+ puis dresser le tableau de variation de f sur \mathbb{R}

6/ a/ Montrer que :
$$f''(x) = \frac{2(x - Arc \tan x) Arc \tan x}{\left[\left(1 + x^2\right)\left(Arc \tan x\right)^2\right]^2}$$

b/ Etudier la concavité de la courbe (C_f)

7/ Construire la courbe (C_f)

